USING PHING
FOR FUN AND
PROFIT

PHING: A PHP BUILD SYSTEM

aaaaaaaa

http://nicj.net/
http://nicj.net/
http://twitter.com/nicj

PHING

Phing is a cross-platform PHP build tool, similar to Apache
Ant.

http://www.phing.info/
http://ant.apache.org/

WHAT IS A BUILD TOOL?

A build tool helps you automate repetitive tasks.

A BUILD TOOL HELPS
YOU...

Build resources (CSS, JavaScript, templates, etc)
Validate code (lint, sniff, etc)

Run unit tests

Build documentation

Create packages

Deploy code

Execute system commands

... and anything else you do repetitively ...

WHY USE A BUILD TOOL?

Otherwise you will f*** up.
You should automate everything you can.
Automating your processes will save you time.

Automating your processes will save you from your future
self.

Maybe not today, maybe not tomorrow, but at some point
you will make a mistake if it's not automated.

WHY USE PHING?

It's written in PHP, so if the rest of your project is PHP, you
can run Phing.

Besides PHP, no other external dependencies are needed
(such as Ruby or Java).

Great community support, with hundreds of different tasks.

INSTALLATION - GITHUB

github.com/phingofficial/phing

$> git clone https:

$> php phing\bin\phing

https://github.com/phingofficial/phing

INSTALLATION - PHAR
PACKAGE

www. phing.info/trac/wiki/Users/Download

$> wget http://www.phing.info/get/phing-latest.phar -0 phing.phar

$> php phing.phar

http://www.phing.info/trac/wiki/Users/Download

INSTALLATION - PEAR

$> pear channel-discover pear.phing.info

$> pear install phing/phing
$> phing

INSTALLATION -
COMPOSER

composer.json:

"require": {
"phing/phing": "2.6.1"

}

$> php composer.phar install
Loading composer repositories with package information
Installing dependencies (including require-dev)
- Installing phing/phing (2.6.1)
Downloading: 100%

Writing lock file
Generating autoload files
$> php vendor\phing\phing\bin\phing

PHING OVERVIEW

Phing is driven by XML files that define your projects, build
targets, and individual tasks.

The XML format is very similar to Apache Ant.

http://ant.apache.org/

PHING - PROJECTS

A project is the root element of your XML.

The <project> defines of all of your build targets and the
tasks that will execute for the targets.

Only the default attribut is required, which specifies the
default target to run.

<project name="my-project" default="build">

</project>

PHING - TARGETS

A <target> is a logical set of actions you want to take.
A <target> can have tasks.

A <target> can also have a list of other targets it depends
on.

<project name="my-project" default="build">
<target name="build" depends="clean,lint,minify" />

<target name="clean">
<echo msg="I'm cleaning your build" />
</target>

</project>

PHING - TASKS

A task will take an action.

Tasks can be a core task that Phing ships with, or an external
plug-in that you write.

<project name="my-project" default="build">
<target name="clean">
<echo msg="I'm cleaning your build" />

<delete dir="build" />
</target>
</project>

http://www.phing.info/docs/stable/hlhtml/index.html#app.coretasks
http://www.phing.info/docs/stable/hlhtml/index.html#ch.extending

PHING - CORE TASKS

123 built-in tasks.
Some of the most useful:

File operations: append, copy, delete, mkdir
Conditional logic: condition, foreach, if, fail

Input / output: echo, input

System: exec, tstamp, taskdef

Source control: git*, svn*, cvs*

Network: ftpdeploy, httpget, mail, s3put, scp, ssh
External Libraries: phpcodesniffer, phpunit,
phpdocumentor, Jslint, phpmd

http://www.phing.info/docs/stable/hlhtml/index.html#app.coretasks

PHING - PROPERTIES

A property is a variable.

Properties can come from built-in properties (Phing
environment variables), abuild.properties file, or
created at runtime in your XML file via the <property>
element.

Use propertiesviathe $ {propertyname} syntax.

<project name="my-project" default="clean">
<property name="builddir" wvalue="./build" />

<target name="clean">

<echo msg="I'm cleaning S${builddir}" />

<delete dir="${builddir}" />
</target>
</project>

PHING - BUILT-IN
PROPERTIES

There are many built-in properties:

application.startdir, env.*, host.arch,
host.domain, host.fstype, host.name, host.os,
host.os.release, host.os.version,
line.separator, os.name, phing.file,
phing.dir, phing.home, phing.version,
phing.project.name, php.classpath,
php.version, project.basedir, user.home

http://www.phing.info/docs/stable/hlhtml/index.html#app.factsheet

PHING - .PROPERTIES
FILES

Simple key=value format

This is a comment in the .properties file
key=value

builddir=build

myapp . name=foo
myapp.url=http://foo.com

<?xml version="1.0" encoding="UTF-8"7?>
<project name="my-project" default="clean">
<property file="./build.properties" />

<target name="clean">
<echo msg="I'm cleaning

<delete dir="
</target>
</project>

PHING - <PROPERTY>

Define new properties in your XML.

<?xml version="1.0" encoding="UTEF-8"7?>

<project name="my-project" default="build">
<property name="builddir" value="./build" />
<property name='"cssdir" value=" /css" />
<property name="jsdir" value=" /js"™ />

<target name="clean">
<delete dir=" ">
<delete dir=" ">
</target>
</project>

EXAMPLES

SIMPLE

<project name="my-project" default="echo">
<target name="echo">
<echo msg="Hello" />
</target>
</project>

>S phing echo
Buildfile: .\build.xml

my-project > echo:
[echo] Hello
BUILD FINISHED

Total time: 0.1780 seconds

TWO TASKS

<project name="my-project" default="first">
<target name="first" depends="second" />

<target name="second">
<fail message="You messed up" />
</target>
</project>

>SS phing first
Buildfile: .\build.xml

my-project > second:

Execution of target "second" failed for the following reason:
A\build.xml:16:22: You messed up

BUILD FAILED
A\build.xml:16:22: You messed up
Total time: 0.1800 seconds

SHELL COMMANDS

<project name="my-project" default="deploy">
<property name="deploy.hostname" value="foo.com" />

<target name="deploy">
<exec

command="rsynz -avz ./ ${deploy.hostname}/"
dir="${project.basedir}"
checkreturn="true" />
</target>
</project>

EXTERNAL PHP

<project name="my-project" default="externaltask">
<target name="externaltask">
<taskdef
name="myprojecttask"
classpath="$ {project.basedir}"
classname="MyTask" />

<myprojecttask message='hi' />
</target>

</project>

<?php
require once 'phing/Task.php';

class MyTask extends Task {
protected S$message;

public function setMessage (Smessage)
Sthis->message = Smessage;

}

public function main () {
echo S$this->message;

}

EXTERNAL PHP - OUTPUT

$>phing externaltask
Buildfile: .\build.xml
[property] Loading .\build.properties

my-project > externaltask:

hi
BUILD FINISHED

Total time: 0.2930 seconds

CONTINUOUS
INTEGRATION / BUILD
SERVER

<project name="big-project" default="build">

<target name="build" depends="clean,checkout, lint,
sniff,phpmd, test,doc,package" />

<target name="deploy" depends="build,pre-deploy, rsync,release"
<target name="clean">
</target>

<target name="checkout">

</target>

DOWNSITDES

e | earning curve if you're not familiar with Ant.

e Asynchronous operation, so large builds/deploys may be
slow.

e Not everything is available on all OSs.

CONCLUSION

1. Use Phing
2. 777

3. Profit!

CONCLUSION

Phing is a great way to automate repetitive tasks.

Phing can be as simple or complex (and powerful) as you
make it.

Phing can save time and reduce human error.
More Info:

ohing.info

Jenkins integration

Jetbrains PhpStorm integration

Eclipse integration

Thanks - Nic Jansma - nicj.net - @Nid

http://www.phing.info/
https://wiki.jenkins-ci.org/display/JENKINS/Phing+Plugin
http://www.jetbrains.com/phpstorm/webhelp/using-phing.html
https://code.google.com/a/eclipselabs.org/p/phingle/
http://nicj.net/
https://twitter.com/NicJ

