Using Modern Browser
APIs to Improve the
Performance of Your

Web Applications

Nic Jansma

Who am I?

Nic Jansma

Microsoft Sr. Developer (2005-2011)
* Windows 7 & IE 9/10 Performance Teams

Founding member of W3C WebPerf WG

Founder of Wolverine Digital LLC

Developing high-performance websites, apps and games

nic@nicj.net @NicJ http://nicj.net
http://github.com/nicjansma
http://www.slideshare.net/nicjansma/

mailto:nic@nicj.net
http://nicj.net/
http://github.com/nicjansma
http://www.slideshare.net/nicjansma/
http://www.slideshare.net/nicjansma/
http://nicj.net/about/contact/

Performance Measurement

Server-side
HTTP logs

Server
monitoring
(cacti / mrtg /
nagios)

Profiling hooks

(<=2010)

Developer Client-side / Real
Browser World
developer tools * Date.now() !?!?
(Firebug / e Client side-
Chrome / IE) hacks
Network (Boomerang)
monitoring
(Fiddler /

WireShark)

https://github.com/lognormal/boomerang

State of Performance (<=2010)

Measuring performance from the server and developer perspective
is not the full story

The only thing that really matters is what your end-user sees
Measuring real-world performance of your end-users is tough
No standardized APIs in the browser that expose performance stats

Other client hacks exist (eg timing via Date.now()), but these are
imprecise and not sufficient

WebPerf WG

Founded in 2010 to give developers the ability to assess and
understand performance characteristics of their applications

“The mission of the Web Performance Working Group is to provide methods to measure
aspects of application performance of user agent features and APIs”

Collaborative effort from Microsoft, Google, Mozilla, Opera,
Facebook, Netflix, etc

W3C WebPerf Goals

Expose information that was not previously available

Give developers the tools they need to make their
applications more efficient

Little or no overhead

Easy to understand APIs

W3C WebPerf Specs

Navigation Timing (NT): Page load timings
Resource Timing (RT): Resource load times
User Timing (UT): Custom site events and measurements

Performance Timeline: Access NT/RT/UT and future timings
from one interface

Page Visibility: Visibility state of document

Timing control for script-based animations:
requestAnimationFrame

High Resolution Time: Better Date.now()

Efficient Script Yielding: More efficient than setTimeout(...,0) /
setimmediate()

Navigation Timing (NT

http://www.w3.org/TR/navigation-timing/

Page load and other network phase timings
Great modern browser support

66.61%

Chrome Firefox
for for
Android Android

i0s Opera Android Bl Opera

Firefox Chrome Safari e Safari Mini | Browser Mobile

.u wmbkit
.u wmbkit
10.0 =
11.0 vk
wmbkit

12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0

http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/

NT: Why You Should Care

e How it was done before:

<html><head><script>
var start = new Date().getTime();
function onLoad {

var pagelLoadTime = (new Date().getTime()) - start;
}
body.addEventListener(“load”, onLoad, false);
</script>...</html>

 That’s all you get: total page load time (kinda)

o Technically, you get the time from the start of processing of JS in your HEAD to the time the body’s onLoad event fires

e Says nothing of time spent before HEAD is parsed (DNS, TCP, HTTP request)

 Date.getTime() has problems (imprecise, not monotonically non-decreasing, user clock
changes)

NT: How To Use

DOM:

window.performance.timing
Phases of navigation

0O O 0O O o O O O

Redirect (301/302s)

DNS

TCP

SSL

Request

Response

Processing (DOM events)
Load

>>> window.performance.timing

(=l Perfomance Timing Detail=d tming

Receiving 3

DOMContentl oaded 40ms

navigationStart 0 Time after the previous document begins unload.
redirectCount 0 Number of redirects since the last non-redirect.
redirectEInd 0 Time after last redirect response ends.,
redirectStart [l Time of fetch that initiated a redirect.
connectEnd “+4ms Time when server connection is finished.
connectStart +4ms Time just before server connection begins.
fetchStart +4ms Time when the resource starts being fetched.
requestStart +4ms Time just before a server request.
domainLockupEnd +7ms Time after domain name lookup.

deior e - dbfean d

PerformanceTiming { navigationStart=1361757245909, unloadEventStart=1361757245920, unloadEventEnd=1361757245938, more.. }

NT: How To Use

How to Use
 Sample real-world page load times
° XHR baCk tO mOtherShlp Site Speed Overview Aug 24, 2012-Sep 23, 2012 ~
JSON. stringify(window.performance): Advanced Segments | Emall Export~ AddtoDashboard ShortoutSETA
€ 5 of pageviews: 100.00% This report s based on 162806 visits (26 55% of visits).

"{"timing":{"navigationStart"”:0, "unloadEventStart":0, "unloadEven
tEnd":0, "redirectStart":0, "redirectEnd":0, "fetchStart":134850684
2513, "domainLookupStart":1348506842513, "domainLookupEnd" :1348506 po—— I oty T woes | wiouts
842513, "connectStart":1348506842513, "connectEnd" :1348506842513, "

requestStart":1348506842513, "responseStart":1348506842595, "respo ® Avg. Page Load Time (sec)

nseEnd":1348506842791, "domLoading" :1348506842597, "domInteractive 5

":1348506842616, "domContentLoadedEventStart":1348506842795, "domC /’\""."—.\‘_‘\v"-.-'_‘\b—"".‘".\‘\',‘~."""\.—"'J
ontentLoadedEventEnd" :1348506842795, "domComplete":1348506842795,

"loadEventStart":1348506842900, "loadEventEnd" :1348506842900, "msF 25

irstPaint":1348506842707}, "navigation":{"redirectCount”:1, "type"

10}}"

Used by:

Overview

Aug 29 Seps Sep 12 Sep 19

-

147,458 of pageviews sent page load sample

= GOOg'G AnalytICS' Slte SpGEd 7777 Avg. Page Load Time (sec): 4.26

An A Avg. Redirection Time (sec): 0.06
¢ B O O m e ra n g APar=" - pyg. Domain Lookup Time (sec): 0.01
De m 0 ~—\~A~ Avg. Server Connection Time (sec): 0.04

Avg. Server Response Time (sec): 0.27

* http://ie.microsoft.com/testdrive/Perfo = s rueoouioss tme seci-015
rmance/msPerformance/Default.html

http://yahoo.github.com/boomerang/doc/
http://yahoo.github.com/boomerang/doc/
http://ie.microsoft.com/testdrive/Performance/msPerformance/Default.html
http://ie.microsoft.com/testdrive/Performance/msPerformance/Default.html

Resource Timing (RT)

http://www.w3.org/TR/resource-timing/

Similar to NavigationTiming, but for all of the
resources (images, scripts, css, media, etc) on your

page

Get most of the data you can see in Net panel in
Firebug/etc

Support:
 |E10
 Chrome 25+ (prefixed)

http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/

RT: Why You Should Care

e How it was done before:

(it wasn’t)

e For dynamically inserted content, you could time how long it took from
DOM insertion to the element’s onLoad event, but that’s not practical for
all of your resources

* You can get this information from Firebug, but that’s not the end-user’s
performance

RT: How To Use

% window.performance.webkitGetEntries()

DOIVI . S ¥ PerformaonceEntrylist {&: PerformonceResourceTiming, 1: Per
. ee function}

. . ¥ @: PerformanceResourceTiming
Pe rfo rman CeTI m el ine connectEnd: 282,B2080284842877
connectStart: 282,800888804842877
domainLookupEnd: 282.88888884842877
domainLookupStart: 282.88888884842877

EaCh resou rce: duraticn: 29,993399795189834

entryType: "resource"

fetchStart: 282.28000084342877
o URL initiatorType: "img"
ey name: “http://www.google.com/images/srpr/logodv.png”
o Initiator type (SCRIPT/IMG/CSS/XHR) nane: “Http://um / /rpr/logosu

redirectstart: @

A = requestStart: @
TI m I ngs: responsetnd: Z31.9999998435378

responsestart: @

1 secureConnectionStart: B
O RedlreCt (301/3025) startTime: 282.80000084842877
» _ proto_ i PerformanceResourceTiming
O DNS ¥ 1: PerformanceResourceTiming
connectEnd: 288.88888818858284
@) TCP connectitart: 288.08088818858254
domainLockupEnd: 268.0608686818858284
o Request domainleockupStart: 288.B8000018858284
duraticn: 23.993999974295497
entryType: “"resource"
O SSL fetch5tart: 2838.00008018853234
initiatorType: "script”
) Response name: “http:// www.google.com/xjs/_/j=/=/c,sb,cr,cdos,ur
B redirectEnd: @
o Processing (DOM events) redirectstart: @
requestStart: @
O Load responseEnd: 231.9999998435378

responseStart: 8
secureConnectionstart: 8
startTime: 263.P60680818858284
¥ _ proto_ i PerformanceResourceTiming
2: PerformanceResourceTiming
31 PerformanceResourceTiming

RT: How To Use

* Many attributes zero’d out if the resource is cross-domain (redirect, DNS,
connect, TCP, SSL, request) UNLESS server sends Timing-Allow-
Origin HTTP header

Timing-Allow-Origin: [* | yourserver.com]

* This is to protect your privacy (attacker can’t load random URLs to see
where you’ve been)

* Your own CDNs should send this HTTP header if you want timing data.
3rd-party CDNs/scripts (eg. Google Analytics) should add this too.

* Only first 150 resources will be captured unless
setResourceTimingBufferSize() is called

Performance Timeline (PT)

http://www.w3.org/TR/performance-timeline/

Interface to access all of the performance metrics that
the browser exposes (eg. Navigation Timing, Resource
Timing, User Timing, etc)

Support:
 |E10
 Chrome 25+ (prefixed)

http://www.w3.org/TR/performance-timeline/
http://www.w3.org/TR/performance-timeline/
http://www.w3.org/TR/performance-timeline/
http://www.w3.org/TR/performance-timeline/

PT: Why You Should Care

Only way to access Resource Timing, User Timing, etc

Gives you a timeline view of performance metrics as they
occur

Future interfaces (say, rendering events) can be added as long
as they hook into the Performance Timeline interface

PT: How To Use

* performance.getEntries()

o All entries in one array

 performance.getEntriesByType(type)

o eg performance.getEntriesByType(“resource”)

 performance.getEntriesByName(name)
o eg performance.getEntriesByName(“http://myurl.com/foo0.js”)

interface PerformanceEntry A
readonly attribute DOMString name;
readonly attribute DOMString entryType;
readonly attribute DOMHighResTimeStamp startTime;
readonly attribute DOMHighResTimeStamp duration;

};

http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/hr-time/

PT: How To USe

Example

» window.performance.webkitGetEntriesByMame("http://ssl.gstatic.com/fgh/js/sem_32b2c293468548083aRcficcc2adddd? . js")
¥ PerformonceEntrylist {8: PerformancefescurceTiming, length: 1, item: Function}
¥ 8: PerformanceResourceTiming
connectEnd: &
connectstart: &
domainlookupEnd: @
domainLookupStart: @
duration: @
entryType: "resource”
fetchstart: 415,.0888888372529
initiatorType: “"script”
name: "http://ssl.gstatic.com/gh/js/sem_32b2c293468548R83abcficcc2adddar . js
redirectEnd: 8
redirectstart: @
requestStart: 8
responseEnd: 415.8888888372529
rezponsestart: @
secureConnecticnstart: @
startTime: 415.8888888372529
» _ proto_ ¢ PerformanceResourceTiming
length: 1

User Timing (UT)

 http://www.w3.org/TR/user-timing/

e Custom site profiling and measurements

* Support:
 |E10
e Chrome 25+ (prefixed)

http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/user-timing/

UT: Why You Should Care

e How it was done before:

<script>
var myMeasurements = [];
var startMeasure = new Date().getTime();

myMeasurements.push((new Date().getTime()) -
start);

</script>

* Problems: Date is imprecise, not monotonically non-decreasing, user clock
changes

UT: How To Use

e Mark a timestamp:
performance.mark(“foo_start”)
performance.mark(“foo_end”)

* Log a measure (difference of two marks)
performance.measure(“foo”, “foo_start”, “foo_end”)

 Get marks and measures
performance.getEntriesByType(“mark”)

[
{name: “foo_start”, entryType: “mark”, startTime: 1000000.203, duration: 0}

{name: “foo_end”, entryType: “mark”, startTime: 1000010.406, duration: 0}
]

performance.getEntriesByType(“measure™)

[

{name: “foo_end”, entryType: “measure”, startTime: 1000000.203, duration: 10.203}

]

UT: How To Use

Easy way to add profiling events to your application

Uses DOMHighResolutionTimeStamp instead of
Date.getTime() for higher precision

Can be used along-side NT and RT timings to get a better
understanding of your app’s performance in the real-world

Page Visibility (PV)

 http://www.w3.org/TR/2013/PR-page-visibility-20130219/

 Know when your application is not visible to the user

http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/

PV: Why You Should Care

e How it was done before:

(it wasn’t)
or
“Are you still there?” popups

 There are times when you may want to know that you can “stop” doing something
if the user isn’t actively looking at your app:

o Applications that periodically do background work (eg, a mail client checking
for new messages)

o Games (auto-pause)
* Knowing this gives you the option of stopping or scaling back your work

* Not doing background work is an efficiency gain -- less resource usage, less
network usage, longer battery life

PV: How To Use

 document.hidden: True if:
User agent is minimized

Page is on a background tab

User agent is about to unload the page

0O O O O

Operating System lock screen is shown

 document.visibilityState:

o hidden, visible, prerender, unloaded

* visibilitychange event

o Fired whenever visibilityState has changed

PV: How To Use

Automatically scale back checking for email if app isn’t visible:

var timer = 0;
var PERIOD VISIBLE = 1000;
var PERIOD _NOT_VISIBLE = 60000;

function onLoad() {
timer = setInterval(checkEmail, (document.hidden) ? PERIOD_NOT_VISIBLE : PERIOD_VISIBLE);
document.addEventListener("visibilitychange"”, visibilityChanged);

function visibilityChanged() {
clearTimeout(timer);
timer = setInterval(checkEmail, (document.hidden) ? PERIOD_NOT_VISIBLE : PERIOD_VISIBLE);

function checkEmail() { // Check server for new messages }

Timing control for script-based
animations (requestAnimationFrame)

 http://www.w3.org/TR/animation-timing/

e Smarter animations

AL RN RN

5.0 ™= 10.
6.0 m™E .
7.0 meEl 2.
8.0 =113,
9.0 meE 14,
10.0 ™= 15.
11.0 ™ 16.
12.0 ™=17.
13.0 ™= 18.
14.0 ™=19.
15.0 ™= 20.
16.0 ™= 21.
17.0 ™=22.
18.0 ™*=23.
19.0 ™= 24,
20.0 ™=25.
21.0 ™= 26.

http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/

RAF: Why You Should Care

e How it was done before:

setTimeout (myAnimation, 10)
 Might be throttled in background tabs (Chrome 1fps)

* The browser can be smarter:

* Coalesce multiple timers (frame animations) so they all draw (and
thus reflow/repaint) at the same time instead of odd intervals,
along with CSS transitions and SVG SMIL

 (Can sync with the device’s frame rate

RAF: How To Use

* Instead of:
function render() { ... stuff ... }

setInterval(render, 16);

* Do:

// Find a good polyfill for requestAnimationFrame
(function animate() {
requestAnimationFrame(animate);
render();

() ;

High Resolution Time (HRT)

 http://www.w3.org/TR/hr-time/

e A better Date.now

 |E10+, Chrome 23(?)+, Firefox 18(?)+

http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/hr-time/

HRT: Why You Should Care

Date.now() / Date().getTime() is the number of milliseconds
since January 1, 1970 UTC.

To be backwards compatible, modern browsers can only get
as precise as 1ms

Resolution of 15+ms in older browsers

Is not monotonically non-decreasing: it does not guarantee
that subsequent queries will not be negative. For example,
this could happen due to a client system clock change.

HRT: How To Use

window.performance.now()

>»> performance.now()
38545856 5033731237
>»> performance.now()

44F2735_2710353402

* Monotonically non-decreasing
e Allows higher than 1ms precision

e Is defined as time since
performance.timing.navigationStart

e NOTE: Is NOT milliseconds since UTC 1970

Efficient Script Yielding (setlmmediate)

 http://www.w3.org/TR/animation-timing/

e Smarter than setTimeout(..., 0)

e Greatdemo @
http://ie.microsoft.com/testdrive/Performance/setimmediat

eSorting/Default.html

http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/
http://ie.microsoft.com/testdrive/Performance/setImmediateSorting/Default.html
http://ie.microsoft.com/testdrive/Performance/setImmediateSorting/Default.html
http://ie.microsoft.com/testdrive/Performance/setImmediateSorting/Default.html

ESY: Why You Should Care

How it was done before:
setTimeout(longTask, 0);
Done to breakup long tasks and to avoid Long Running Script dialogs

At max, setTimeout() in this manner will callback every 15.6ms (HTML4) or 4ms
(HTMLS5) or 1s (modern browsers in background tabs) because callback depends
on OS interrupts

Setting a Oms timeout still takes 4-15.6ms to callback

Not efficient! Keeps CPU from entering low-power states (40% decrease in battery
life)

setimmediate yields if there is Ul work to be done, but doesn’t need to wait for
the next processor interrupt

ESY: How To Use

setImmediate(longTask);
* Waits for the Ul queue to empty

* If nothing in the queue, runs immediately (eg without setTimeout()
4ms/15.6ms/1s delay)

Questions?

@NicJ

nic@nicj.net

Slides @ http://www.slideshare.net/nicjansma/

mailto:nic@nicj.net
mailto:nic@nicj.net
http://www.slideshare.net/nicjansma/
http://www.slideshare.net/nicjansma/

