

Nic Jansma
@NicJ

//nicj.net

Using Modern Browser
APIs to Improve the
Performance of Your

Web Applications

Who am I?
Nic Jansma

Microsoft Sr. Developer (2005-2011)
Å Windows 7 & IE 9/10 Performance Teams

Founding member of W3C WebPerf WG

Founder of Wolverine Digital LLC

Developing high-performance websites, apps and games

nic@nicj.net @NicJ http://nicj.net
http://github.com/nicjansma

http://www.slideshare.net/nicjansma/

mailto:nic@nicj.net
http://nicj.net/
http://github.com/nicjansma
http://www.slideshare.net/nicjansma/
http://www.slideshare.net/nicjansma/
http://nicj.net/about/contact/

Performance Measurement
(<=2010)

Server-side

ÅHTTP logs

ÅServer
monitoring
(cacti / mrtg /
nagios)

ÅProfiling hooks

Developer

ÅBrowser
developer tools
(Firebug /
Chrome / IE)

ÅNetwork
monitoring
(Fiddler /
WireShark)

Client-side / Real
World

ÅDate.now() !?!?

ÅClient side-
hacks
(Boomerang)

https://github.com/lognormal/boomerang

State of Performance (<=2010)
ÅMeasuring performance from the server and developer perspective

is not the full story

Å The only thing that really matters is what your end-user sees

ÅMeasuring real-world performance of your end-users is tough

Å No standardized APIs in the browser that expose performance stats

ÅOther client hacks exist (eg timing via Date.now()), but these are
imprecise and not sufficient

WebPerf WG

ÅFounded in 2010 to give developers the ability to assess and
understand performance characteristics of their applications

ά¢ƘŜ mission of the Web Performance Working Group is to provide methods to measure
aspects of application performance of user agent features and !tLǎέ

ÅCollaborative effort from Microsoft, Google, Mozilla, Opera,
Facebook, Netflix, etc

W3C WebPerf Goals
ÅExpose information that was not previously available

ÅGive developers the tools they need to make their
applications more efficient

ÅLittle or no overhead

ÅEasy to understand APIs

W3C WebPerf Specs
ÅNavigation Timing (NT): Page load timings

ÅResource Timing (RT): Resource load times

ÅUser Timing (UT): Custom site events and measurements

ÅPerformance Timeline: Access NT/RT/UT and future timings
from one interface

ÅPage Visibility: Visibility state of document

ÅTiming control for script-based animations:
requestAnimationFrame

ÅHigh Resolution Time: Better Date.now()

ÅEfficient Script Yielding: More efficient than setTimeout(...,0) /
setImmediate()

Navigation Timing (NT)
Å http://www.w3.org/TR/navigation-timing/

Å Page load and other network phase timings

Å Great modern browser support

http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/
http://www.w3.org/TR/navigation-timing/

NT: Why You Should Care
Å How it was done before:

<html><head><script>
var start = new Date(). getTime ();
function onLoad {
 var pageLoadTime = (new Date(). getTime ()) - start;
}
body.addEventListener ƽƧÌÏÁÄƨƗ onLoad, false);
</script>...</html>

Å ¢ƘŀǘΩǎ ŀƭƭ ȅƻǳ ƎŜǘΥ ǘƻǘŀƭ ǇŀƎŜ ƭƻŀŘ ǘƛƳŜ όkinda)

o ¢ŜŎƘƴƛŎŀƭƭȅΣ ȅƻǳ ƎŜǘ ǘƘŜ ǘƛƳŜ ŦǊƻƳ ǘƘŜ ǎǘŀǊǘ ƻŦ ǇǊƻŎŜǎǎƛƴƎ ƻŦ W{ ƛƴ ȅƻǳǊ I9!5 ǘƻ ǘƘŜ ǘƛƳŜ ǘƘŜ ōƻŘȅΩǎ onLoad event fires

Å Says nothing of time spent before HEAD is parsed (DNS, TCP, HTTP request)

Å Date.getTime() has problems (imprecise, not monotonically non-decreasing, user clock

changes)

NT: How To Use
ÅDOM:

window.performance.timing

ÅPhases of navigation
o Redirect (301/302s)

o DNS

o TCP

o SSL

o Request

o Response

o Processing (DOM events)

o Load

NT: How To Use
How to Use
Å Sample real-world page load times
Å XHR back to mothership

JSON.stringify (window.performance):

"{"timing":{"navigationStart":0,"unloadEventStart":0,"unloadEven
tEnd":0,"redirectStart":0,"redirectEnd":0,"fetchStart":134850684
2513,"domainLookupStart":1348506842513,"domainLookupEnd":1348506
842513,"connectStart":1348506842513,"connectEnd":1348506842513,"
requestStart":1348506842513,"responseStart":1348506842595,"respo
nseEnd":1348506842791,"domLoading":1348506842597,"domInteractive
":1348506842616,"domContentLoadedEventStart":1348506842795,"domC
ontentLoadedEventEnd":1348506842795,"domComplete":1348506842795,
"loadEventStart":1348506842900,"loadEventEnd":1348506842900,"msF
irstPaint":1348506842707},"navigation":{"redirectCount":1,"type"
:0}}"

Used by:
Å Google Analytics' Site Speed
Å Boomerang
Demo
Å http://ie.microsoft.com/testdrive/Perfo

rmance/msPerformance/Default.html

http://yahoo.github.com/boomerang/doc/
http://yahoo.github.com/boomerang/doc/
http://ie.microsoft.com/testdrive/Performance/msPerformance/Default.html
http://ie.microsoft.com/testdrive/Performance/msPerformance/Default.html

Resource Timing (RT)
Åhttp://www.w3.org/TR/resource-timing/

ÅSimilar to NavigationTiming, but for all of the
resources (images, scripts, css, media, etc) on your
page

ÅGet most of the data you can see in Net panel in
Firebug/etc

ÅSupport:

Å IE10

ÅChrome 25+ (prefixed)

http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/

RT: Why You Should Care
ÅHow it was done before:

όƛǘ ǿŀǎƴΩǘύ

Å For dynamically inserted content, you could time how long it took from
5ha ƛƴǎŜǊǘƛƻƴ ǘƻ ǘƘŜ ŜƭŜƳŜƴǘΩǎ onLoad ŜǾŜƴǘΣ ōǳǘ ǘƘŀǘΩǎ ƴƻǘ ǇǊŀŎǘƛŎŀƭ ŦƻǊ
all of your resources

Å ¸ƻǳ Ŏŀƴ ƎŜǘ ǘƘƛǎ ƛƴŦƻǊƳŀǘƛƻƴ ŦǊƻƳ CƛǊŜōǳƎΣ ōǳǘ ǘƘŀǘΩǎ ƴƻǘ ǘƘŜ ŜƴŘ-ǳǎŜǊΩǎ
performance

RT: How To Use
ÅDOM: See

PerformanceTimeline

ÅEach resource:
o URL

o Initiator type (SCRIPT/IMG/CSS/XHR)

ÅTimings:
o Redirect (301/302s)

o DNS

o TCP

o Request

o SSL

o Response

o Processing (DOM events)

o Load

RT: How To Use
Gotchas
Å Many attributes ȊŜǊƻΩŘ out if the resource is cross-domain (redirect, DNS,

connect, TCP, SSL, request) UNLESS server sends Timing - Allow -
Origin HTTP header

 Timing - Allow - Origin: [* | yourserver.com]

Å ¢Ƙƛǎ ƛǎ ǘƻ ǇǊƻǘŜŎǘ ȅƻǳǊ ǇǊƛǾŀŎȅ όŀǘǘŀŎƪŜǊ ŎŀƴΩǘ ƭƻŀŘ ǊŀƴŘƻƳ ¦w[ǎ ǘƻ ǎŜŜ
ǿƘŜǊŜ ȅƻǳΩǾŜ ōŜŜƴύ

Å Your own CDNs should send this HTTP header if you want timing data.
3rd-party CDNs/scripts (eg. Google Analytics) should add this too.

Å Only first 150 resources will be captured unless
setResourceTimingBufferSize () is called

Performance Timeline (PT)
Åhttp://www.w3.org/TR/performance-timeline/

Å Interface to access all of the performance metrics that
the browser exposes (eg. Navigation Timing, Resource
Timing, User Timing, etc)

ÅSupport:

Å IE10

ÅChrome 25+ (prefixed)

http://www.w3.org/TR/performance-timeline/
http://www.w3.org/TR/performance-timeline/
http://www.w3.org/TR/performance-timeline/
http://www.w3.org/TR/performance-timeline/

PT: Why You Should Care
ÅOnly way to access Resource Timing, User Timing, etc

ÅGives you a timeline view of performance metrics as they
occur

ÅFuture interfaces (say, rendering events) can be added as long
as they hook into the Performance Timeline interface

PT: How To Use
Åperformance.getEntries()

o All entries in one array

Åperformance.getEntriesByType(type)
o eg performance.getEntriesByType ƽƧÒÅÓÏÕÒÃÅƨƾ

Åperformance.getEntriesByName (name)
o eg performance.getEntriesByName ƽƧÈÔÔÐƙƳƳÍÙÕÒÌƚÃÏÍƳÆÏÏƚÊÓƨƾ

interface PerformanceEntry {

 readonly attribute DOMString name;

 readonly attribute DOMString entryType ;

 readonly attribute DOMHighResTimeStamp startTime ;

 readonly attribute DOMHighResTimeStamp duration ;

};

http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/hr-time/

PT: How To USe
Example

User Timing (UT)
Åhttp://www.w3.org/TR/user-timing/

ÅCustom site profiling and measurements

ÅSupport:

Å IE10

ÅChrome 25+ (prefixed)

http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/user-timing/

UT: Why You Should Care
ÅHow it was done before:

<script>

var myMeasurements = [];

var startMeasure = new Date(). getTime ();

...

myMeasurements.push((new Date(). getTime ()) -
start);

</ script >

Å Problems: Date is imprecise, not monotonically non-decreasing, user clock
changes

UT: How To Use
Å Mark a timestamp:
performance.mark ƽƧfoo_start ƨƾ
performance.mark ƽƧfoo_end ƨƾ

Å Log a measure (difference of two marks)
performance.measure ƽƧÆÏÏƨƗ Ƨfoo_start ƨƗ Ƨfoo_end ƨƾ

Å Get marks and measures
performance.getEntriesByType ƽƧÍÁÒËƨƾ
[
 ǅÎÁÍÅƙ Ƨfoo_start ƨƗ entryType ƙ ƧÍÁÒËƨƗ startTime : 1000000.203, duration : 0}
 ǅÎÁÍÅƙ Ƨfoo_end ƨƗ entryType ƙ ƧÍÁÒËƨƗ startTime : 1000010.406, duration: 0}
]

performance.getEntriesByType ƽƧÍÅÁÓÕÒÅƨƾ
[
 ǅÎÁÍÅƙ Ƨfoo_end ƨƗ entryType : ƧÍÅÁÓÕÒÅƨƗ startTime : 1000000.203, duration: 10.203 }

]

UT: How To Use
ÅEasy way to add profiling events to your application

ÅUses DOMHighResolutionTimeStamp instead of
Date.getTime() for higher precision

ÅCan be used along-side NT and RT timings to get a better
ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ȅƻǳǊ ŀǇǇΩǎ performance in the real-world

Page Visibility (PV)
Åhttp://www.w3.org/TR/2013/PR-page-visibility-20130219/

ÅKnow when your application is not visible to the user

http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/
http://www.w3.org/TR/2013/PR-page-visibility-20130219/

PV: Why You Should Care
Å How it was done before:

όƛǘ ǿŀǎƴΩǘύ
or
ά!ǊŜ ȅƻǳ ǎǘƛƭƭ ǘƘŜǊŜΚέ ǇƻǇǳǇǎ

Å ¢ƘŜǊŜ ŀǊŜ ǘƛƳŜǎ ǿƘŜƴ ȅƻǳ Ƴŀȅ ǿŀƴǘ ǘƻ ƪƴƻǿ ǘƘŀǘ ȅƻǳ Ŏŀƴ άǎǘƻǇέ ŘƻƛƴƎ ǎƻƳŜǘƘƛƴƎ
ƛŦ ǘƘŜ ǳǎŜǊ ƛǎƴΩǘ ŀŎǘƛǾŜƭȅ ƭƻƻƪƛƴƎ ŀǘ ȅƻǳǊ ŀǇǇΥ
o Applications that periodically do background work (eg, a mail client checking

for new messages)
o Games (auto-pause)

Å Knowing this gives you the option of stopping or scaling back your work

Å Not doing background work is an efficiency gain -- less resource usage, less

network usage, longer battery life

