
Philip Tellis
@bluesmoon

Nic Jansma
@nicj

https://github.com/SOASTA/boomerang

http://www.soasta.com/mpulse

http://slideshare.net/nicjansma/measuring-real-user-performance-in-the-browser

https://github.com/SOASTA/boomerang
https://github.com/SOASTA/boomerang
http://www.soasta.com/mpulse
http://www.soasta.com/mpulse

2016-09-20

#VelocityCONF NY 2016

Measuring Real User
Performance in the

Browser

http://slideshare.net/nicjansma/measuring-real-user-performance-in-the-browser

• Real User Measurement

• Browser Performance APIs

• Visual Experience

• Beaconing

• Single Page Apps

• Continuity

• Nixing Noise

Agenda

Abbé Jean-Antoine Nollet

1700 - 1770
French Clergyman & Budding Electrician

Invented one of the first Electroscopes

(we now call them beacon collectors)

L'Abbé Jean Antoine Nollet — Maurice Quentin de La Tour

Alte Pinakothek, Munich, Germany Public Domain

http://www.wikiart.org/en/maurice-quentin-de-la-tour/abbot-jean-antoine-nollet
http://www.wikiart.org/en/maurice-quentin-de-la-tour
http://www.wikiart.org/en/maurice-quentin-de-la-tour/abbot-jean-antoine-nollet

In 1746, he conducted the first ever RUM Experiment

He shot an electric current

through 200 monks, and

checked how quickly they

jumped; thereby measuring

the latency of an electric

signal with…

Real Users!

Fortunately, our methods have
gotten far less intrusive...

but first...

Why do we care?

Delight

Or

Frustrate

Experience

Responsiveness

Cognitive
Dissonance/Resonance

Smoothness

Delight

Frustration

ok then...

How do we do it?

• High Resolution Time: Better Date.now()

• Navigation Timing (NT): Page load timings

• Performance Timeline: Access NT/RT/UT from one API

• Resource Timing (RT): Resource load timings

• User Timing (UT): Custom site events and measurements

• Page Visibility: Visibility state of the document

• Timing control for script-based animations: requestAnimationFrame()

• Efficient Script Yielding: setImmediate()

• Resource Hints: dns-prefetch, preconnect, prefetch, prerender

• Preload: Mandatory high-priority fetch for current navigation

• Cooperative Scheduling of Background Tasks: requestIdleCallback()

• Beacon: sendBeacon()

Performance aware Browser APIs

DOMHighResTimeStamp
High-resolution, monotonically non-decreasing clock

Date DOMHighResTimeStamp

Accessed via (new Date).getTime() performance.now()

Start Unix epoch navigationStart

Monotonically non-decreasing No Yes

Affected by user’s clock Yes No

Resolution Millisecond Sub-millisecond

Example 1420147524606 3392.275999998674

https://w3c.github.io/hr-time/

https://w3c.github.io/hr-time/
https://w3c.github.io/hr-time/

DOMHighResTimeStamp

Monotonically non-decreasing

Date.getTime() performance.now()

@ Navigation Start 1420147524606 0

@ 100ms 1420147524706 100.0

@ 200ms 1420147524806 200.0

@ 300ms + user's clock moves back 1s 1420147523906 300.0

@ 400ms 1420147524006 400.0

DOMHighResTimeStamp: Usage

var myTime = performance.now();

// 8141.84 -> 8.1 seconds after page load

NavigationTiming

http://www.w3.org/TR/navigation-timing

Exposes accurate performance metrics describing your visitor's page load

http://www.w3.org/TR/navigation-timing
http://www.w3.org/TR/navigation-timing

NavigationTiming: Timestamps
window.performance.timing

Navigation timestamps:

NavigationTiming: Characteristics
window.performance.navigation

Characteristics of the browser navigation

window.performance.navigation.type:

• navigate = 0

• reload = 1

• back / forward = 2

NavigationTiming: Usage

function onLoad() {
 if ('performance' in window && 'timing' in window.performance) {
 setTimeout(function() {
 var t = window.performance.timing;
 var ntData = {
 redirect: t.redirectEnd - t.redirectStart,
 dns: t.domainLookupEnd - t.domainLookupStart,
 connect: t.connectEnd - t.connectStart,
 ssl: t.secureConnectionStart ? (t.connectEnd - secureConnectionStart) : 0,
 request: t.responseStart - t.requestStart,
 response: t.responseEnd - t.responseStart,
 dom: t.loadEventStart - t.responseEnd,
 total: t.loadEventEnd - t.navigationStart
 };
 }, 0);
 }
}

NavigationTiming: Browser Support

NavigationTiming: Integrations
DIY:
• Send this data to your backend for logging
• Show any page's timings via a bookmarklet: kaaes.github.io/timing
• Boomerang: github.com/SOASTA/boomerang
• Boomcatch: cruft.io/posts/introducing-boomcatch
• BoomerangExpress: github.com/andreas-marschke/boomerang-express
• SiteSpeed.io: sitespeed.io
• Piwik: github.com/piwik/piwik

Commercial:
● SOASTA mPulse, Google Analytics Site Speed, New Relic Browser,

NeuStar WPM, SpeedCurve, etc...

NavigationTiming: Tips
• Use fetchStart instead of navigationStart unless you're interested in redirects,

tab initialization time, etc.

• loadEventEnd will be 0 until after the body's load event has finished (so you can't
measure it in the load event)

• We don't have an accurate way to measure the "request time", as "requestEnd" is
invisible to us (the server sees it)

• Home page scenarios: Timestamps up through responseEnd event may be 0
duration because some browsers speculatively pre-fetch home pages (and don't
report the correct timings)

• If possible, do any beaconing of the data as soon as possible. Browser
onbeforeunload isn't 100% reliable for sending data

• Not suitable for Single-Page Apps (we’ll cover this later)

Coming Soon to NavigationTiming

• Part of the Performance Timeline: performance.getEntries("navigation")

• Support for DOMHighResTimeStamp

• Timing information for prerender

• Protocol information: nextHopProtocol

• Transfer, encoded body and decoded body sizes

NavigationTiming: chrome.loadTimes()
{

 "requestTime" : 1473093945.032975,

 "startLoadTime" : 1473093945.129178,

 "commitLoadTime" : 1473093945.575271,

 "finishDocumentLoadTime" : 1473093946.872513,

 "finishLoadTime" : 1473093952.281069,

 "firstPaintTime" : 1473093945.96769,

 "firstPaintAfterLoadTime": 1473093952.316622,

 "navigationType" : "BackForward",

 "wasFetchedViaSpdy" : true,

 "wasNpnNegotiated" : true,

 "npnNegotiatedProtocol" : "quic/1+spdy/3",

 "wasAlternateProtocolAvailable" : false,

 "connectionInfo" : "quic/1+spdy/3"

}

what did we do before

NavigationTiming?

Prior to NavigationTiming

1. Hook into the beforeUnload, unload and pagehide events to set a
cookie with the timestamp and url

2. In the onload or pageshow event, check if the cookie is set and if
the url in the cookie matches document.referrer

3. If we have a match, calculate the time delta

● beforeUnload corresponds to navigationStart
● unload and pagehide correspond to responseStart
● We also hook into clicks and form submits just in case the user goes off to a new tab

Note: This doesn't help for external referrers!

Surprisingly, this works all
the way back to IE5.5

(insofar as we've tested)

ResourceTiming

https://www.w3.org/TR/resource-timing/

Exposes sub-resource performance metrics

https://www.w3.org/TR/resource-timing/
https://www.w3.org/TR/resource-timing/

ResourceTiming: Inspiration

ResourceTiming: History

How it was done in the old days:

var start = new Date().getTime();
var image1 = new Image();
var resourceTiming = function() {
 var now = new Date().getTime();
 var latency = now - start;
 alert("End to end resource fetch: " + latency);
};

image1.onload = resourceTiming;
image1.src = 'http://www.w3.org/Icons/w3c_main.png';

(not practical for all types of content -- or a regular HTML website)

PerformanceTimeline
Unifying interface to access and retrieve performance metrics

window.performance:

• getEntries(): Gets all entries in the timeline

• getEntriesByType(type): Gets all entries of the specified type (eg
resource, mark, measure)

• getEntriesByName(name): Gets all entries with the specified name
(eg URL or mark name)

PerformanceTimeline: Usage

ResourceTiming: performance.getEntriesByType("resource")[0]

{
 name : "http://www.foo.com/foo.png",
 initiatorType : "img",
 entryType : "resource",
 startTime : 566.357000003336,
 workerStart : 0,
 redirectStart : 0,
 redirectEnd : 0,
 fetchStart : 566.357000003336,
 domainLookupStart : 566.357000003336,
 domainLookupEnd : 566.357000003336,
 connectStart : 566.357000003336,
 secureConnectionStart : 0,
 connectEnd : 566.357000003336,
 requestStart : 568.4959999925923,
 responseStart : 569.4220000004862,
 responseEnd : 570.6329999957234,
 duration : 4.275999992387369
}

ResourceTiming: InitiatorType

• img

• link

• script

• css: url(), @import

• xmlhttprequest

• image (SVG)

• object (Flash)

localName of the element

ResourceTiming: Buffer

• There is a ResourceTiming buffer (per IFRAME) that stops filling after
its size limit is reached (default: 150 entries)

• Listen for the onResourceTimingBufferFull event

• setResourceTimingBufferSize(n) and clearResourceTimings()
can be used to modify it

• Do NOT setResourceTimingBufferSize(99999999) as this can lead
to browser memory growing unbound

ResourceTiming: Compressing

• Each resource is ~ 500 bytes JSON.stringify()'d

• HTTP Archive tells us there's 103 HTTP resources on average, per
page, with an average URL length of 85 bytes

• That means you could expect around 45 KB of ResourceTiming data
per page load

• For comparison, the default TCP Window size allows 15 KB to go
through before requiring an ACK, so do the math.

• Compress it: nicj.net/compressing-resourcetiming

http://nicj.net/compressing-resourcetiming

ResourceTiming: Compressing
{
 connectEnd: 566.357000003336,
 connectStart: 566.357000003336,
 domainLookupEnd: 566.357000003336,
 domainLookupStart: 566.357000003336,
 duration: 4.275999992387369,
 entryType: "resource",
 fetchStart: 566.357000003336,
 initiatorType: "img",
 name: "http://www.foo.com/foo.png",
 redirectEnd: 0,
 redirectStart: 0,
 requestStart: 568.4959999925923,
 responseEnd: 570.6329999957234,
 responseStart: 569.4220000004862,
 secureConnectionStart: 0,
 startTime: 566.357000003336,
 workerStart: 0
}

{
 "http://": {
 "foo.com/": {
 "js/foo.js": "370,1z,1c",
 "css/foo.css": "48c,5k,14"
 },
 "moo.com/moo.gif": "312,34,56"
 }
}

Compresses ResourceTiming data down
to 15% of original size

https://github.com/nicjansma/resourcetiming-compression.js

https://github.com/nicjansma/resourcetiming-compression.js
https://github.com/nicjansma/resourcetiming-compression.js

ResourceTiming: Timing-Allow-Origin

• By default to protect the user's privacy, cross-origin resources expose
timestamps for only the fetchStart and responseEnd attributes

• If you have a CDN, or multiple domains, you can allow access to this data
from your primary domain

• Use the TAO:
Timing-Allow-Origin: origin-list-or-null OR *

• Note: Third-party libraries (ads, analytics, etc) must set this on their
servers. 5% do according to HTTP Archive. Google, Facebook, Disqus,
mPulse, etc.

What are the others afraid of?

ResourceTiming: Timing-Allow-Origin
// Apache .htaccess

<IfModule mod_headers.c>

 Header set Timing-Allow-Origin "*"

</IfModule>

// nginx

location / {

 add_header 'Timing-Allow-Origin' '*';

}

// PHP

<?php

 header('Timing-Allow-Origin: *');

?>

// JBoss

protected void doPost(HttpServletRequest req,

 HttpServletResponse res) {

 res.setHeader("Timing-Allow-Origin", "*");

}

And we can get more creative if we only want to allow specific Origins

ResourceTiming: Blocking Time

• Browsers open a limited number of connections to each unique origin

• If there are more resources than this number, later resources "block"

• ResourceTiming duration includes Blocking time!

• So, don't use duration... but this is all you get with cross-origin resources.

var waitTime = 0;
if (res.connectEnd && res.connectEnd === res.fetchStart) {
 waitTime = res.requestStart - res.connectEnd;
}
else if (res.domainLookupStart) {
 waitTime = res.domainLookupStart - res.fetchStart;
}

• Cached resources will show up along side resources that were fetched
from the network

• Due to privacy concerns, no direct indication a resource was fetched
from the cache

• In practice, resources with a very short duration are likely cache hits

• 0 - 2ms → In memory cache

• 2 - 10ms → Disk cache

• 10 - 40ms → Cached by Edge Proxy

ResourceTiming: Cache Hits

ResourceTiming: Integrations
• Compress + send this data to your backend for logging

• Show any page's resources via a bookmarklet:
github.com/andydavies/waterfall

• Heatmap bookmarklet / Chrome extension:
github.com/zeman/perfmap

• Nurun's Performance Bookmarklet:
github.com/nurun/performance-bookmarklet

• Boomerang supports ResourceTiming:
github.com/SOASTA/boomerang

• SOASTA mPulse, New Relic Browser, SpeedCurve, etc.

DIY:

Pay:

https://github.com/andydavies/waterfall
https://github.com/andydavies/waterfall
https://github.com/zeman/perfmap
https://github.com/zeman/perfmap
https://github.com/nurun/performance-bookmarklet
https://github.com/nurun/performance-bookmarklet
https://github.com/SOASTA/boomerang
https://github.com/SOASTA/boomerang

ResourceTiming: Browser Support

ResourceTiming isn't yet available on iOS, but you can polyfill it using MutationObserver:

1. Start a MutationObserver listening for new nodes with a src or href

2. Add load & error event listeners & a timeout to deal with cached resources

3. Once the load (or error) event has fired, you have the total load time for the resource
(keep in mind that an error event might also fire on Network Error)

In addition, you'll want to instrument XMLHttpRequest (which won't be captured by
MutationObserver):

1. Proxy the XMLHttpRequest object

2. Hook into .open() and .send() and add onreadystatechange listeners

Sample code: github.com/SOASTA/boomerang/blob/master/plugins/auto_xhr.js

Note: This doesn't give you detailed information such as DNS & TCP timings

ResourceTiming: Polyfill

https://github.com/SOASTA/boomerang/blob/master/plugins/auto_xhr.js

• Ensure your CDNs and third-party libraries send Timing-Allow-Origin

• What isn't included in ResourceTiming:

• The root HTML page (get this from window.performance.timing)

• HTTP code (privacy concerns)

• Content that loaded with errors (eg 404s) (browser inconsistencies)

• If you're going to be managing the ResourceTiming buffer, make sure no other scripts are
managing it as well

• Each IFRAME will have its own ResourceTiming data, and those resources won't be included in
the parent FRAME/document. So you'll need to traverse the document frames to get all
resources

• about:blank, javascript: URLs will be seen in RT data

• You may see browser extensions fetching resources in RT data

ResourceTiming: Tips

ResourceTiming2: Coming Soon

Available in recent Firefox, Chrome:

• nextHopProtocol: ALPN Protocol ID (e.g. quic+http2)

• transferSize: Bytes transferred for HTTP header and response

• decodedBodySize: Size of the body after removing any applied
content-codings

• encodedBodySize: Size of the body after prior to removing any
applied content-codings

UserTiming
Measuring in-page scripts and other things

that don't fire events

UserTiming
https://www.w3.org/TR/user-timing/

Standardized interface to note timestamps ("marks")
and durations ("measures")

https://www.w3.org/TR/user-timing/
https://www.w3.org/TR/user-timing/

UserTiming: History

How it was done before:

var start = new Date().getTime();
// do stuff
var now = new Date().getTime();
var duration = now - start;

UserTiming is a better way of doing this!

UserTiming: Marks & Measures

• Mark: A timestamp

• Measure: The delta between two timestamps

UserTiming: Usage

Creating:
• window.performance.mark(name)

• window.performance.measure(name, [start], [end])

Clearing:

• window.performance.clearMarks([name])

• window.performance.clearMeasures([name])

Querying:

• window.performance.getEntriesByType("mark")

• window.performance.getEntriesByType("measure")

// retrieve
performance.getEntriesByType("mark");

[
 {
 "duration":0,
 "startTime":150384.48100000096,
 "entryType":"mark",
 "name":"start"
 },
 {
 "duration":0,
 "startTime":150600.5250000013,
 "entryType":"mark",
 "name":"end"
 },
 ...
]

// mark
performance.mark("start");
performance.mark("end");

performance.mark("another");
performance.mark("another");
performance.mark("another");

UserTiming: Mark

UserTiming: Measure
// measure
performance.mark("start");

// do work
performance.mark("start2");

// measure from "now" to the "start" mark
performance.measure("time to do stuff", "start");

// measure from "start2" to the "start" mark
performance.measure("time from start to start2", "start", "start2");

// retrieval - specific
performance.getEntriesByName("time from start to start2", "measure");

[
 {
 "duration":4809.890999997151,
 "startTime":145287.66500000347,
 "entryType":"measure",
 "name":"time from start to start2"
 }
]

UserTiming: Benefits

• Uses the PerformanceTimeline, so marks and measures are in the
PerformanceTimeline along with other events

• Uses DOMHighResTimestamp instead of Date so timestamps are
sub-millisecond, monotonically non-decreasing, etc

• Browsers and third-party tools can find your performance events
easily

UserTiming: Polyfill

• It's easy to add a Polyfill that adds UserTiming support to browsers
that do not natively support it

• UserTiming is accessed via the PerformanceTimeline, and requires
window.performance.now() support, so UserTiming.js adds a limited
version of these interfaces if the browser does not support them

• github.com/nicjansma/usertiming.js

https://github.com/nicjansma/usertiming.js
https://github.com/nicjansma/usertiming.js

UserTiming: Compressing

Compresses performance.getEntriesByName("mark"):
[{"duration":0,"entryType":"mark","name":"mark1","startTime":100.0},

{"duration":0,"entryType":"mark","name":"mark2","startTime":150.0},

{"duration":0,"entryType":"mark","name":"mark3","startTime":500.0},

{"duration":0,"entryType":"mark","name":"measure1","startTime":100.0},

{"duration":100,"entryType":"mark","name":"measure2","startTime":150.0},

{"duration":200,"entryType":"mark","name":"measure3","startTime":500.0}]

Down to something more reasonable:
~(m~(ark~(1~'2s~2~'5k~3~'8c)~easure~(1~'2s_2s~2~'5k_5k~3~'8c_8c)))

nicj.net/compressing-usertiming/

github.com/nicjansma/usertiming-compression.js

http://nicj.net/compressing-usertiming/
http://nicj.net/compressing-usertiming/

UserTiming: Browser Support

UserTiming: Dev Tools

UserTiming: Dev Tools

Other Useful APIs

Visibility and Painting

PageVisibility

Lets you know when a webpage is visible or in focus.

document.visibilityState:

• hidden
• Browser is minimized
• Background tab
• About to unload or traverse session history
• OS lock screen

• visible
• prerender

• Being speculatively pre-rendered
• Important for analytics!

• unloaded

PageVisibility: Usage

// query the current state

var state = document.visibilityState;

// listen for state change events

document.addEventListener("visibilitychange", function() {

 if (document.visibilityState === "hidden") {

 // stop doing something

 } else if (document.visibilityState === "hidden") {

 // restart doing something

 }

});

PageVisibility: Browser Support

requestAnimationFrame

Tells the browser you wish to run a function prior to the next repaint:

var last = performance.now();

function raf(timestamp) {

 var now = performance.now();

 var diff = last - now;

 // update the UI based on the difference in time

 last = now;

 requestAnimationFrame(raf);

}

requestAnimationFrame(raf);

More examples when we talk about measuring continuity.

requestAnimationFrame: Browser Support

Page Load Milestones
• First Byte

• First content was received from the server

• = responseStart

• onload

• Once all content statically included or injected before
onload has been fetched

• = loadEventStart

• Fully Loaded

• Once all static & dynamic content has been fetched

• No browser event!

Visual Experience
When does the user feel like they can use the app?

Network timings != visual experience

Milestones:
• First Paint
• First Contentful Paint
• First Meaningful Paint
• Visually Complete

Visual Experience

Metrics:
• Visual Progress
• Speed Index

Visual Experience: First Paint
What was the first thing the user saw?

Visual Experience: First Paint
What was the first thing the user saw?

Visual Experience: First Paint
• Not an industry standard metric!

• The first paint of the browser might show zero content (all
white)

// IE 9+ only

window.performance.timing.msFirstPaint

// -> 1473640901

// Chrome only

window.chrome.loadTimes().firstPaintTime;

// -> 1473640917.063874

Visual Experience: First Contentful Paint
• First time a "contentful" thing is painted:

• text
• image
• canvas
• SVG

• Could still be just a minor page element

• e.g. just a navigation bar

Visual Experience: First Meaningful Paint
• Page's primary content appears on screen

• Primary content differs for each page

• Definition still being developed, but this could be a
heuristic, guided by hints from developers

Visual Experience: Visually Complete
• All content has been displayed on the screen

• Might be hard to measure with animations, ads, etc

• Not the same as onload! Content can load after onload.

Visual Experience
• Besides First Paint, none of these are available in browsers

today:

• First Contentful Paint

• First Meaningful Paint

• Visually Complete

• Currently being developed into industry-standard definitions

• Also options:

• First Non-White (non-background) Paint

• First Non-Blank Paint

Progressive Web Metrics
Via Paul Irish: github.com/paulirish/pwmetrics

https://github.com/paulirish/pwmetrics

Visual Progress
Percentage of screen drawn over time (relative to last frame)

Speed Index
• Average time at which visible parts of the page are

displayed

• Expressed in milliseconds

• Area above the curve

• Lower the better

Speed Index
Downsides:

• Not very well understood

• Can be hard to describe (even to techies! let alone
marketing)

• Can only be captured accurately in a lab (synthetic testing)

RUM Speed Index
Calculate Speed Index measurements from the field using
Resource Timings

• Depends on ResourceTiming support

• Still being developed

• Needs better support for IFRAMEs, SVGs, etc

github.com/WPO-Foundation/RUM-SpeedIndex

[30 minute break]
http://slideshare.net/nicjansma/measuring-real-user-performance-in-the-browser

Single Page Apps

Single Page Apps (SPAs)
• Run on a single page, dynamically bringing in content as

necessary

• Frameworks such as AngularJS, Ember.js, Backbone.js,
React, etc.

Definitions

• Hard Navigation: The first page load, which will include all
static HTML, JavaScript, CSS, the SPA framework itself (e.g.
angular.js), plus showing the initial route

• Soft Navigation: Any subsequent route (address bar) change

• Any URL might be loaded via either hard or soft navigation

SPAs...

3 Challenges

Challenge 1: The onload Event No Longer Matters

Traditional Websites:

• On navigation, the browser begins downloading all of the
JavaScript, CSS, images and other static resources

• Once all static resources are fetched, the body's onload
event will fire

• This is traditionally what websites consider as page load
complete

Challenge 1: The onload Event No Longer Matters

Challenge 1: The onload Event No Longer Matters
Single Page Apps:

• Load all static content like a traditional website

• The frameworks' code will also be fetched (e.g.
angular.js)

• (the onload event fires here)

• Once the SPA framework is loaded, it starts looking at
routes, fetching views and data

• All of this content is fetched after the onload event

Challenge 1: The onload Event No Longer Matters

Challenge 1: The onload Event No Longer Matters
● Browser fires onload at 1.225 seconds

● All visual resources (.jpgs) aren't complete
until after 1.7 seconds

● Filmstrip confirms nothing is shown until
around 1.7 seconds

● onload fired 0.5 seconds too early!

Challenge 2: Soft Navs are not Real Navigations
• This is great for performance

• The browser is no longer re-rendering the same header,
footer or common components

• The browser is no longer re-parsing the same HTML,
JavaScript and CSS

Bad for measuring:

• Browser events (readyState, onload) and metrics
(NavigationTiming) are all geared toward a single load event

• Won't run again until the next time it loads on a full
navigation

Challenge 3: Browser Won't Tell You When All
Downloads Have Completed

• The browser fires onload only once

• The onload event helps us know when all static content was
fetched

• In a soft navigation scenario, the browser does not fire the
onload event again, so we don't know when its content was
fetched

Challenge 3: Browser Won't Tell You When All
Downloads Have Completed

SPA soft navigations may fetch:

• Templates

• Images

• CSS

• JavaScript

• XHRs

• Videos

How to Measure SPAs

We need to figure out at what point the
navigation started (the start event),

through when we consider the navigation
complete (the end event).

How to Measure SPAs: Start Event
Hard navigations:

• Same as a traditional app - navigationStart

Soft navigations:

• We need to figure out when the user's view is going to
significantly change

• The browser history is changing

• SPA framework routing events can give us an indicator that
the view will be changing

• Other important events that might indicate a view change
are a user click, or an XHR that triggers DOM changes

How to Measure SPAs: Start Event

SPA frameworks fire routing events when the view is changing:

• AngularJS: $rootScope.$on("$routeChangeStart")

• Ember.js: beforeModel or willTransition

• Backbone.js: router.on("route")

How to Measure SPAs: Start Event
Clicks & XHRs:

• To determine if a user click or XHR is really triggering a
navigation, we can listen to what happens next

• If there was a lot of subsequent network activity, we can
keep on listening for more events

• If history (address bar) changed, we can consider the event
the start of a navigation

• If the DOM was updated significantly, we can consider the
event the start of a navigation

• If nothing else happened, it was probably just an
insignificant interaction

How to Measure SPAs: Start Event

How to Measure SPAs: End Event

When do we consider the SPA navigation complete?

• When all networking activity has completed

• When the UI is visually complete (above-the-fold)

• When the user can interact with the page

Remember: onload doesn't work:

• Only tracks static resources

• SPA frameworks dynamically load other content

• onload doesn't fire for Soft Navs

How to Measure SPAs: End Event

Let's make our own SPA complete event:

• Similar to the body onload event, let's wait for all network
activity to complete

• This means we will have to intercept both implicit resource
fetches (e.g. from new DOM elements) as well as
programmatic (e.g. XHR) resource fetches

How to Measure SPAs: Monitoring XHRs
• XHRs are used to fetch HTML, templates, JSON, XML, data

and other assets

• We should monitor to see if any XHRs are occurring

• The XMLHttpRequest object can be proxied

• Intercept the .open() and .send() methods to know when
an XHR is starting

• Listen to onReadyStateChange events to know when it's
complete

github.com/lognormal/boomerang/blob/master/plugins/auto_xhr.js

How to Measure SPAs: Monitoring DOM Fetches
• XHR is the main way to fetch resources via JavaScript

• What about Images, JavaScript, CSS and other HTML
elements that trigger resource fetches?

• We can't proxy the Image object as that only works if you
create a new Image() in JavaScript

• If only we could listen for DOM changes...

MutationObserver

developer.mozilla.org/en-US/docs/Web/API/MutationObserver:

• MutationObserver provides developers a way to react to
changes in a DOM

• observe() for specific events

• Get a callback when mutations for those events occur

How to Measure SPAs: Monitoring DOM Fetches
• Start listening when an XHR, click, route change or other

interesting navigation-like event starts

• Use MutationObserver to listen for DOM mutations

• Attach load and error event handlers and set timeouts on
any IMG, SCRIPT, LINK or FRAME

• If an interesting element starts fetching keep the navigation
"open" until it completes

• After the last element's resource has been fetched, wait a few
milliseconds to see if it kicked off anything else

• If not, the navigation completed when the last element's
resource was fetched

github.com/lognormal/boomerang/blob/master/plugins/auto_xhr.js

How to Measure SPAs: Monitoring DOM Fetches
What's interesting?

• Internal and cached resources may not fetch anything, so you
have to inspect elements first

• IMG elements that haven't already been fetched
(naturalWidth==0), have external URLs (e.g. not data-uri:)
and that we haven't seen before

• SCRIPT elements that have a src set

• IFRAMEs elements that don't have javascript: or about:
protocols

• LINK elements that have a href set

How to Measure SPAs: Monitoring DOM Fetches
Why not ResourceTiming?

• ResourceTiming events are only added to the buffer after they
complete

• In order to extend the SPA navigation end time, we have to
know if any resource fetches are outstanding

• We can use ResourceTiming later to supplement the data we
get from XHR+MO

How to Measure SPAs: Front-End vs. Back-End
Traditional apps:

How to Measure SPAs: Front-End vs. Back-End
Traditional apps:

• Back-End: HTML fetch start to HTML response start

• Front-End: Total Time - Back-End

Single Page Apps:

• Back-End: Any time slice with an XHR or SCRIPT outstanding

• Since these are most likely critical path resources

• Front-End: Total Time - Back-End

Accelerated Mobile Pages

AMP: Accelerated Mobile Pages
What is AMP?
• A way to build web pages for improved performance
• Restricts what you can put in your site to achieve this

Components:
• AMP HTML: Similar to HTML5 with restrictions
• AMP JavaScript: JavaScript library you include
• Google AMP Cache: Free CDN

Restrictions
• Cannot include any first- or third-party JavaScript

AMP: RUM
<amp-pixel src="http://…">

• GET query URL
• Substitution variables to gather metrics:

• Document info (URL, Canonical URL, Title, Referer)
• NavigationTiming (TCP, DNS, SSL, Page Load, etc)
• Navigation Type and Redirect Count
• Persisted Client ID
• Total Engaged Time
• Screen/Viewport dimensions

Example:
<amp-pixel src="http://myserver.com/beacon?u=AMPDOC_URL&t=PAGE_LOAD_TIME">

AMP: RUM
<amp-analytics>

• AMP extension

• Built in vendor configs (> 25)

• Easy to configure

• Predefined list of metrics is sent to vendor

Continuity

• We measure everything up to navigation complete (page load
or SPA nav)

• We measure whether users bounce or convert

 But
• The bulk of user interaction and experience happens after

navigation has completed

Which continuous
variables can we measure

and how?

Developer Tools

“The fact that something is possible to measure, and may even be highly
desirable and useful to expose to developers, does not mean that it can
be exposed as runtime JavaScript API in the browser, due to various
privacy and security constraints”

— Performance APIs, Security and Privacy

https://w3c.github.io/perf-security-privacy/

Developer Tools

https://w3c.github.io/perf-security-privacy/
https://w3c.github.io/perf-security-privacy/

Continuity Metrics

• requestAnimationFrame(callback)
• Callback is run before the next paint

// total frames seen this second

var frames = 0;

function measureFps() {

 frames++;

 // request a callback before the next frame

 window.requestAnimationFrame(measureFps);

}

// start measuring

window.requestAnimationFrame(measureFps);

// report on frame rate (FPS) once a second

setInterval(function() {

 console.log("FPS: " + frames);

 frames = 0;

}, 1000);

FPS - Frames Per Second

FPS - Long Frames
Frames > 16.6 ms lead to < 60 FPS

var lastFrame = performance.now();

var longFrames = 0;

function measureFps() {

 var now = performance.now();

 // calculate how long this frame took

 if (now - lastFrame >= 18) { longFrames++; }

 lastFrame = now;

 window.requestAnimationFrame(measureFps);

}

window.requestAnimationFrame(measureFps);

// report on long frames once a second

setInterval(function() {

 console.log("Long frames: " + longFrames);

 longFrames = 0;

}, 1000);

FPS - Video
HTML5 VIDEO metrics (Chrome/FF)

var latestFrame = 0;

var latestReportedFrame = 0;

setInterval(function() {

 // find the first VIDEO element on the page

 var vids = document.getElementsByTagName("video");

 if (vids && vids.length) {

 var vid = vids[0];

 if (vid.webkitDecodedFrameCount || vid.mozPaintedFrames) {

 latestFrame = vid.webkitDecodedFrameCount || vid.mozPaintedFrames;

 }

 }

 console.log("Video FPS: "

 + Math.max(latestFrame - latestReportedFrame, 0));

 // reset count

 latestReportedFrame = latestFrame;

}, 1000);

CPU - Page Busy

• Browser doesn’t expose CPU metrics directly

• Detect Busy by running a function at a regular interval

• See if the callback runs at the time we expect

• If the callback was delayed, the page was Busy

• Busy can be caused by other JavaScript, layout, render, etc

CPU - Page Busy
setInterval(function() {

 var now = performance.now();

 var delta = now - last;

 last = now;

 // if we are more than 2x the poll

 // + deviation, we missed one period completely

 while (delta > ((POLLING_INTERVAL * 2)

 + ALLOWED_DEVIATION_MS)) {

 total++;

 late++;

 delta -= POLLING_INTERVAL; // adjust, try again

 }

 total++;

 if (delta > (POLLING_INTERVAL + ALLOWED_DEVIATION_MS)) {

 late++;

 }

}, POLLING_INTERVAL);

NET - Resources
• ResourceTiming
• Bytes available in ResourceTiming2

var resources =

 window.performance.getEntriesByType("resource");

// number of resources fetched

var resourceCount = resources.length;

// number of bytes

var bytesOverWire = 0;

resources.forEach(function(res) {

 bytesOverWire +=

 res.transferSize ? res.transferSize : 0;

});

console.log("Resources: " + resourceCount

 + " " + bytesOverWire + "b");

HEAP - Memory Usage

• Non-standard (Chrome only)
• Reduced precision to avoid privacy concerns

// report on JS object memory once a second

setInterval(function() {

 var mem = window.performance

 && window.performance.memory

 && window.performance.memory.usedJSHeapSize;

 console.log("Memory usage: " + mem);

}, 1000);

Battery

• Monitor your visitor’s battery state
• Reduce work on low battery

setInterval(function() {

 navigator.getBattery().then(function(batt) {

 console.log(batt.level);

 });

}, 1000);

Interactions

• scroll
• mousemove
• click
• keydown

Interactions - User Input

Interactions - Visibility

Window’s visibility state

document.addEventListener("visibilitychange", function() {

 console.log(document.hidden ? "hidden" : "visible");

}, false);

Also look at the IntersectionObserver

https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

Interactions - Orientation

How the device is being held

window.addEventListener("orientationchange", function() {

 console.log("orientation: " + screen.orientation.angle);

});

Size Metrics

Size - Nodes

• HTML size (bytes)
• Overall Node count
• IFRAME, IMG, SCRIPT, etc., node count

MutationObserver == change over time
var d = document;

var mutationCount = 0;

var domLength =

 d.getElementsByTagName("*").length;

// create an observer instance

var observer = new MutationObserver(function(mutations) {

 mutations.forEach(function(mutation) {

 if (mutation.type !== "childList") { return; }

 for (var i = 0; i < mutation.addedNodes.length; i++) {

 var node = mutation.addedNodes[i];

 mutationCount++;

 mutationCount += node.getElementsByTagName ?

 node.getElementsByTagName("*").length : 0;

 }

 });

});

// configure the observer

observer.observe(d, { childList: true, subtree: true });

Size - DOM Changes

Errors

var errorCount = 0;

window.onerror = function () {

 errorCount++;

}

setInterval(function() {

 console.log("Errors: " + errorCount);

 errorCount = 0;

}, 1000);

Demo

github.com/SOASTA/measuring-continuity

So what?

• Raw data != useful metrics

• Let’s measure the user experience
• Smoothness
• Responsiveness
• Reliability
• Emotion

Smoothness - FPS during scroll
FPS during page load

Smoothness - FPS after interaction

Responsiveness

• How long it takes for the site to respond to input?

• requestAnimationFrame to detect next paint

• MutationObserver to detect DOM changes

• UserTiming to monitor your own code

• SPA instrumentation via boomerang

• Strive to give feedback within 100 milliseconds of a
user interaction!

Responsiveness

document.addEventListener("click", function(e) {

 var start = performance.now();

 requestAnimationFrame(function() {

 var delta = performance.now() - start;

 console.log("Click responsiveness: " + delta);

 });

}, false);

• https://github.com/spanicker/longtasks

• Call a callback whenever a task takes too long to
complete

Responsiveness: Long Task API

https://github.com/spanicker/longtasks
https://github.com/spanicker/longtasks

Reliability

• JavaScript errors

• Leaks:

• JavaScript memory usage over time

• DOM size increase over time

Tracking Emotion

Rage Clicks

blog.fullstory.com/moar-magic-announcing-rage-error-and-dead-clicks-1f19e50a1421

Rage clicks are series of clicks in which your users are pummeling
their mouse buttons in frustration. It’s like punching your site in the
face, usually because it’s not doing what the user wants or expects it
to.

— Caitlin Brett, FullStory

https://blog.fullstory.com/moar-magic-announcing-rage-error-and-dead-clicks-1f19e50a1421
https://blog.fullstory.com/moar-magic-announcing-rage-error-and-dead-clicks-1f19e50a1421
https://blog.fullstory.com/@caitlinbrett?source=post_header_lockup

Rage Clicks
var same = 0, x = 0, y = 0, targ = null;

document.addEventListener("click", function(e) {

 var nX = e.clientX; var nY = e.clientY;

 // calculate number of pixels moved

 var pixels = Math.round(

 Math.sqrt(Math.pow(y - nY, 2) +

 Math.pow(x - nX, 2)));

 if (targ == e.target || pixels <= 10) {

 same++;

 } else {

 same = 0;

 }

 console.log("Same area clicked: " + same);

 x = nX; y = nY; targ = e.target;

}, false);

Dead Clicks

• Clicking without any meaningful visual (DOM) change

• Might happen during (or right after) page load due to
delayed JavaScript

Dead Clicks

http://www.youtube.com/watch?v=yVB49ULYNJY

Missed Clicks
User clicks near an element, but misses it

“People who are angry are more likely to use the mouse in a jerky
and sudden, but surprisingly slow fashion.
People who feel frustrated, confused or sad are less precise in their
mouse movements and move it at different speeds.”

— Inferring Negative Emotion from Mouse Cursor Movements
Martin Hibbeln, Jeffrey L. Jenkins, Christoph Schneider, Joseph S. Valacich, and Markus Weinmann

Mouse Movement

Trusting Your Data

Avoiding the Observer Effect

• JavaScript is Single Threaded (per domain)

• Unless the browser is idle, anything you do in JavaScript will
slow down some other JavaScript

• So how do we measure performance without affecting
performance?

Avoiding the Observer Effect

Use the IFrame Loader Technique to load measurement code
outside the critical path

OR

Load measurement code after the onload event
(but then you can't measure things that happen before onload)

http://www.lognormal.com/blog/2012/12/12/the-script-loader-pattern/

Avoiding the Observer Effect

• Do as little as possible in event handlers, eg, read a
timestamp or save state to a variable

• Do more expensive processing of this data via a
requestIdleCallback that runs when the browser is idle

requestIdleCallback is only available on Chrome and Opera at the moment, so use a shim for other browsers

• requestIdleCallback API Spec: MDN://docs/Web/API/Window/requestIdleCallback

• Complete, spec compliant SHIM: github://aFarkas/requestIdleCallback

• Minimal Google SHIM (not entirely compliant): github://github/requestIdleCallback

https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://github.com/aFarkas/requestIdleCallback
https://github.com/aFarkas/requestIdleCallback
https://github.com/aFarkas/requestIdleCallback
https://github.com/github/requestIdleCallback
https://github.com/github/requestIdleCallback
https://github.com/github/requestIdleCallback

Avoiding the Observer Effect

• The unload event is a bit problematic because nothing can
be deferred from it, so KiSS*, like writing to localStorage

• Anything else should be run deferred from an
onBeforeUnload handler (which is non-standard and not
supported everywhere)

• Also stay away from the scroll event or debounce/throttle

https://css-tricks.com/debouncing-throttling-explained-examples/

KiSS: Keep it Short & Simple

https://css-tricks.com/debouncing-throttling-explained-examples/
https://css-tricks.com/debouncing-throttling-explained-examples/

and whatever you do...

Never Instrument
Flash!

Beaconing
the mechanics of getting performance data back to you

How to Beacon

There are several methods for sending ("beaconing") data:

• Image beacon

• Form beacon

• XMLHttpRequest beacon

• Beacon API

Image Beacon

Create an element from JavaScript with your query string data

<script>

var img = new Image();

img.src = "http://myserver.com/beacon?pageLoad=100&dns=30";

// your data has been sent!

</script>

Pros:

• Easy and lightweight!

• 100% browser support

Hint: Return a 204 No Content HTTP response

Image Beacon
Cons:
• Must put data on the query string (no POST)

• URL length (payload) limitation:

• Windows IE 6-8: 2083 b

• Windows Chrome, Safari, Opera, Firefox, IE9+: >100 kb

• Mac: Chrome, Opera, Firefox, Safari: >100 kb

• Android Chrome, Opera: 81,500 b

• iOS Safari, Chrome: >100 kb

• Proxies? Beware

Image Beacon: URL Limit
Need to update your server config config for >8 KB URLs:

// Apache

// https://httpd.apache.org/docs/2.2/mod/core.html#limitrequestline

// Default: LimitRequestLine 8190

LimitRequestLine 16380

// nginx

// https://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers

// Default: large_client_header_buffers 4 8k;

large_client_header_buffers 4 16k;

// JBoss

// https://docs.jboss.org/jbossweb/2.1.x/config/http.html

// Default: maxHttpHeaderSize="8192"

<Connector ... maxHttpHeaderSize="16384"/>

Form Beacon

Create a <FORM> element, POST it to a hidden IFRAME

var iframe, name = "beacon-" + Math.random();
try {
 // IE <= 8
 iframe = document.createElement('<iframe name="' + name + '">');
} catch (ignore) {
 // everything else
 iframe = document.createElement("iframe");
}

form.action = "https://my-server.com/beacon";
form.target = iframe.name = iframe.id = name;
iframe.style.display = form.style.display = "none";
iframe.src = "javascript:false";

remove(iframe.id);
remove(form.id);

document.body.appendChild(iframe);
document.body.appendChild(form);

try { form.submit(); }
catch (ignore) {}

function remove(id) {
 var el = document.getElementById(id);
 if (el) {
 el.parentNode.removeChild(el);
 }
}

// cleanup
setTimeout(function() { remove(iframe.id); }, 10000);

https://github.com/SOASTA/boomerang/blob/master/boomerang.js#L710-L761

Form Beacon

Server Implementation:

• IE 10 can hang if given a 200 response. For best compat:

• 204 No Content
• Content-Length: 0
• Content-Type: image/gif
• X-XSS-Protection: 0

• Timing-Allow-Origin: *

• To be able to capture ResourceTiming data

• Access-Control-Allow-Origin: [*|domain]

• If sent from another origin

Form Beacon

Pros:

• POST data > 2,083 bytes (works in IE <= 8)

Cons:

• Complex JavaScript

• Less efficient than an Image beacon

• Lots of potential for browser bugs and incompatibilities! We've seen
browser hangs, beacons opening in new windows, beacon URL in the
status bar, etc. Use the boomerang.js code to avoid these.

XMLHttpRequest Beacon

Create an XMLHttpRequest object

<script>

var xhr = new XMLHttpRequest();

xhr.open("GET", "https://my-server.com/beacon?pageLoad=100", true);

xhr.send();

</script>

Pros:

• Easy and relatively lightweight!
• GET and POST support
• Large payload support

Hint: Return a 204 No Content HTTP response

XMLHttpRequest Beacon

Server Implementation:

• For best performance:

• 204 No Content
• Content-Length: 0

• Timing-Allow-Origin: *

• To be able to capture ResourceTiming data

• Access-Control-Allow-Origin: [*|domain]

• If sent from another origin

XMLHttpRequest Beacon
Cons:

• Not supported in IE 8/9. Requires XDomainRequest

• GET/POST only

• No custom headers

• Only text/plain requests

• No authentication or cookies

• Restricted to same scheme as host page

Beacon API

How do we guarantee an beacon is sent when the user is leaving the page?

window.addEventListener('unload', logData, false);

function logData() {

 var client = new XMLHttpRequest();

 client.open("POST", "/log", false); // third parameter indicates sync xhr. :(

 client.setRequestHeader("Content-Type", "text/plain;charset=UTF-8");

 client.send(analyticsData);

}

This is bad because it is synchronous and blocks the browser UI.

Async XHRs and Images can be cancelled in unload.

onbeforeunload is not supported by Safari.

Beacon API

Beacon API requests are:

• Prioritized to avoid competition with other UI and higher-priority
network requests

• Optimized on mobile devices (may be coalesced)

• Guaranteed to be initiated before page is unloaded

Beacon API: Usage

Simple API:

window.addEventListener("visibilitychange", logData, false);

function logData() {

 if (document.visiblityState === "hidden") {

 navigator.sendBeacon("/log", analyticsData);

 }

}

Note: Use visibilitychange event as unload will not fire whenever a

page is hidden and the process is terminated.

Beacon API: Browser Support

How to Beacon

We recommend:

• Use sendBeacon() if available

• If not, use Image beacon if < 2,000 bytes

• If not, use XMLHttpRequest if available and > 2,000 bytes

• If not, consider using FORM beacons or just shrug and move on

When to Beacon

Depends on your use-case:
• As soon as you can to be the most reliable

• For general analytics:
• As soon as you load if you're not waiting for perf metrics

• For performance analytics:
• After onload or SPA complete to gather all relevant performance

metrics

• For continuous metrics or session length:
• On pagehide if supported
• On beforeunload if supported
• On unload as a last resort (avoid using sync XHR)

Nixing Noise
getting rid of obviously absurd data

Getting Rid of Noise

• Look at simple things like data type & range of all the data
you collect

• Don't trust client timestamps, only trust deltas

• Check for a reasonable rate of data input per client

• Validate that your data collector isn't CSRFed

• Segregate known bot traffic (well behaved bots)

Some common bogus things we see

• All timer values are set to 9999999999

• Client timestamps are more than a day, year or 30+ years in
the past

• Requests that do not change over time

• Requests that are very regularly spaced

• Client makes exactly the same high valued purchase
repeatedly

• Page Load time is negative or more than a week long

• Measured bandwidth in Terabits/second

Getting Rid of Noise

• We also use statistical methods to identify Outliers

• Use MAD or Tukey's method to identify data that is outside
the expected range

• Nelson Rules to check for sufficient randomness

• 3e-Smoothing to compare actual values with expected values

• Don't throw away outliers, analyze them separately

MAD: Median Absolute Deviation: wikipedia://Median_absolute_deviation

John Tukey's fences: datapigtechnologies.com/.../highlighting-outliers-...-with-the-tukey-method/

Nelson Rules: wikipedia://Nelson_rules

https://en.wikipedia.org/wiki/Median_absolute_deviation
http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/
https://en.wikipedia.org/wiki/Nelson_rules

Offline First
Measuring without network connectivity

Offline First

• ResourceTiming includes workerStart that tells us when a
ServiceWorker that intercepted a request started

• Our measurement code should also run as a ServiceWorker,
queuing up beacons while offline…

• But how do we distinguish these queued beacons from
forged beacons without an unexpired anti-CSRF token?

This is something we're still experimenting with, so we don't have any concrete recommendations,
but we invite you to join the experiment.

W3C WebPerf Working Group

www.w3.org/2010/webperf

Founded in 2010 to give developers the ability to assess and understand
performance characteristics of their web apps:

“The mission of the Web Performance Working Group is to provide
methods to measure aspects of application performance of user agent

features and APIs”

Microsoft, Google, Mozilla, Opera, Facebook, Netflix, Akamai, SOASTA, etc

http://www.w3.org/2010/webperf
http://www.w3.org/2010/webperf

• Hi Res Timer
https://w3c.github.io/hr-time/

• Navigation Timing
http://www.w3.org/TR/navigation-timing
developer.mozilla.org/.../Web/API/Navigation_timing_API

• Resource Timing
https://www.w3.org/TR/resource-timing/
developer.mozilla.org/.../Web/API/Resource_Timing_API

• Resource Timing Compressor
http://nicj.net/compressing-resourcetiming

• User Timing
https://www.w3.org/TR/user-timing/
developer.mozilla.org/.../Web/API/User_Timing_API

• User Timing Polyfill
https://github.com/nicjansma/usertiming.js

• User Timing Compressor
http://nicj.net/compressing-usertiming/

• Page Visibility
https://w3c.github.io/page-visibility/
developer.mozilla.org/.../Web/API/Page_Visibility_API

• Service Workers
https://www.w3.org/TR/service-workers/
developer.mozilla.org/.../Web/API/Service_Worker_API

API Reference
• requestAnimationFrame

https://www.w3.org/TR/animation-timing/
developer.mozilla.org/.../Web/API/window/requestAnimationFrame

• requestIdleCallback
https://www.w3.org/TR/requestidlecallback/
developer.mozilla.org/.../Web/API/Window/requestIdleCallback

• Spec compliant requestIdleCallback SHIM
github://aFarkas/requestIdleCallback

• Minimal requestIdleCallback SHIM
github://github/requestIdleCallback

• Mutation Observer
developer.mozilla.org/.../Web/API/MutationObserver

• Performance Observer
https://www.w3.org/TR/performance-timeline-2/
developer.mozilla.org/.../Web/API/PerformanceObserver

• Intersection Observer
https://wicg.github.io/IntersectionObserver/
developer.mozilla.org/.../Web/API/Intersection_Observer_API

• Beacon API
https://w3c.github.io/beacon/
developer.mozilla.org/.../Web/API/Navigator/sendBeacon

• W3C Web Performance Working Group
http://www.w3.org/2010/webperf

https://w3c.github.io/hr-time/
https://w3c.github.io/hr-time/
http://www.w3.org/TR/navigation-timing
http://www.w3.org/TR/navigation-timing
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://www.w3.org/TR/resource-timing/
https://www.w3.org/TR/resource-timing/
https://developer.mozilla.org/en-US/docs/Web/API/Resource_Timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Resource_Timing_API
http://nicj.net/compressing-resourcetiming
http://nicj.net/compressing-resourcetiming
https://www.w3.org/TR/user-timing/
https://www.w3.org/TR/user-timing/
https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_API
https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_API
https://github.com/nicjansma/usertiming.js
https://github.com/nicjansma/usertiming.js
http://nicj.net/compressing-usertiming/
http://nicj.net/compressing-usertiming/
https://w3c.github.io/page-visibility/
https://w3c.github.io/page-visibility/
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility_API
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility_API
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://www.w3.org/TR/animation-timing/
https://www.w3.org/TR/animation-timing/
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://www.w3.org/TR/requestidlecallback/
https://www.w3.org/TR/requestidlecallback/
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://github.com/aFarkas/requestIdleCallback
https://github.com/aFarkas/requestIdleCallback
https://github.com/aFarkas/requestIdleCallback
https://github.com/github/requestIdleCallback
https://github.com/github/requestIdleCallback
https://github.com/github/requestIdleCallback
https://github.com/github/requestIdleCallback
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://www.w3.org/TR/performance-timeline-2/
https://www.w3.org/TR/performance-timeline-2/
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceObserver
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceObserver
https://wicg.github.io/IntersectionObserver/
https://wicg.github.io/IntersectionObserver/
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://w3c.github.io/beacon/
https://w3c.github.io/beacon/
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/sendBeacon
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/sendBeacon
http://www.w3.org/2010/webperf
http://www.w3.org/2010/webperf

• Boomerang
https://github.com/SOASTA/boomerang

• Andy Davies' Waterfall Bookmarklet
https://github.com/andydavies/waterfall

• Mark Zeman's Heatmap
https://github.com/zeman/perfmap

• Progressive Web Metrics
https://github.com/paulirish/pwmetrics

• Accelerated Mobile Pages
https://www.ampproject.org/

• The IFrame Loader Technique
http://www.lognormal.com/blog/2012/12/12/the-script-loader-pattern/

• Affectiva Emotion Analyzer
https://github.com/affectiva/youtube-demo

• MAD: Median Absolute Deviation
https://en.wikipedia.org/wiki/Median_absolute_deviation

• John Tukey's fences
datapigtechnologies.com/.../highlighting-outliers-...-with-the-tukey-method/

• Nelson Rules
 https://en.wikipedia.org/wiki/Nelson_rules

• Exponential Smoothing
grisha.org/blog/2016/01/29/triple-exponential-smoothing-forecasting/

Further Reading
• Rage Clicking

http://blog.fullstory.com/2015/12/reducing-ux-rage-with-fullstorys-rage-clicks/

• Inferring Emotion from Mouse Movements
telegraph://technology/.../Websites-could-read-emotions-by-...-move-your-mouse.html

• Scroll Behaviour
http://blog.chartbeat.com/2013/08/12/scroll-behavior-across-the-web/

• WebGazer: Eye tracking in JavaScript
http://webgazer.cs.brown.edu/

• What JavaScript knows about you
http://webkay.robinlinus.com/

• Video Metrics
https://wiki.whatwg.org/wiki/Video_Metrics

• The Runtime Performance Checklist
http://calendar.perfplanet.com/2013/the-runtime-performance-checklist/

• Jank Meter
https://webperf.ninja/2015/jank-meter/

• RAIL Performance Audit of SFGate.com
https://docs.google.com/document/d/1K-mKOqiUiSjgZTEscBLjtjd6E67oiK8H2ztOiq5tigk

• Debouncing and Throttling Events
https://css-tricks.com/debouncing-throttling-explained-examples/

https://github.com/SOASTA/boomerang
https://github.com/SOASTA/boomerang
https://github.com/andydavies/waterfall
https://github.com/andydavies/waterfall
https://github.com/zeman/perfmap
https://github.com/zeman/perfmap
https://github.com/paulirish/pwmetrics
https://github.com/paulirish/pwmetrics
https://www.ampproject.org/
https://www.ampproject.org/
http://www.lognormal.com/blog/2012/12/12/the-script-loader-pattern/
http://www.lognormal.com/blog/2012/12/12/the-script-loader-pattern/
https://github.com/affectiva/youtube-demo
https://github.com/affectiva/youtube-demo
https://en.wikipedia.org/wiki/Median_absolute_deviation
https://en.wikipedia.org/wiki/Median_absolute_deviation
http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/
http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/
https://en.wikipedia.org/wiki/Nelson_rules
http://grisha.org/blog/2016/01/29/triple-exponential-smoothing-forecasting/
http://grisha.org/blog/2016/01/29/triple-exponential-smoothing-forecasting/
http://blog.fullstory.com/2015/12/reducing-ux-rage-with-fullstorys-rage-clicks/
http://blog.fullstory.com/2015/12/reducing-ux-rage-with-fullstorys-rage-clicks/
http://www.telegraph.co.uk/technology/news/12050481/Websites-could-read-emotions-by-seeing-how-fast-you-move-your-mouse.html
http://www.telegraph.co.uk/technology/news/12050481/Websites-could-read-emotions-by-seeing-how-fast-you-move-your-mouse.html
http://blog.chartbeat.com/2013/08/12/scroll-behavior-across-the-web/
http://blog.chartbeat.com/2013/08/12/scroll-behavior-across-the-web/
http://webgazer.cs.brown.edu/
http://webgazer.cs.brown.edu/
http://webkay.robinlinus.com/
http://webkay.robinlinus.com/
https://wiki.whatwg.org/wiki/Video_Metrics
https://wiki.whatwg.org/wiki/Video_Metrics
http://calendar.perfplanet.com/2013/the-runtime-performance-checklist/
http://calendar.perfplanet.com/2013/the-runtime-performance-checklist/
https://webperf.ninja/2015/jank-meter/
https://webperf.ninja/2015/jank-meter/
https://docs.google.com/document/d/1K-mKOqiUiSjgZTEscBLjtjd6E67oiK8H2ztOiq5tigk/pub
https://docs.google.com/document/d/1K-mKOqiUiSjgZTEscBLjtjd6E67oiK8H2ztOiq5tigk/pub
https://css-tricks.com/debouncing-throttling-explained-examples/
https://css-tricks.com/debouncing-throttling-explained-examples/

Photo Credits

Angel Delight by Auntie P
https://www.flickr.com/photos/auntiep/360764980/

Frustrated by Kevin Lawver
https://www.flickr.com/photos/kplawver/1903240219/

https://www.flickr.com/photos/auntiep/360764980/
https://www.flickr.com/photos/auntiep/360764980/
https://www.flickr.com/photos/kplawver/1903240219/
https://www.flickr.com/photos/kplawver/1903240219/

Thank You

http://slideshare.net/nicjansma/measuring-real-user-performance-in-the-browser

https://github.com/SOASTA/boomerang

http://www.soasta.com/mpulse

http://slideshare.net/nicjansma/measuring-real-user-performance-in-the-browser

Philip Tellis
@bluesmoon

Nic Jansma
@nicj

https://github.com/SOASTA/boomerang
https://github.com/SOASTA/boomerang
http://www.soasta.com/mpulse
http://www.soasta.com/mpulse

