
MAKE IT FAST
Using Modern Brower APIs to Monitor and Improve the

Performance of your Web Applications

 | | nic jansma nicj.net @nicj

http://nicj.net/
http://nicj.net/
http://twitter.com/nicj

WHO AM I?
Nic Jansma
nic@nicj.net

@nicj
http://nicj.net

SOASTA (current)

Microsoft (2005-2011)

Founding member of W3C WebPerf Working Group

mailto:nic@nicj.net
https://twitter.com/nicj/
http://nicj.net/

STATE OF PERFORMANCE
MEASUREMENT
How do we measure performance?

SERVER
HTTP logs (apache, nginx, haproxy)

Server monitoring (top, iostat, vmstat, cacti, mrtg, nagios,
new relic)

Profiling (timestamps, xdebug, xhprof)

Load testing (ab, jmeter, soasta, blazemeter, loadrunner)

DEVELOPER
Browser developer tools (ie, chrome, ff, opera, safari)

Network monitoring (fiddler, wireshark, tcpdump)

BUT...
Measuring performance from the server and developer
perspective is not the full story

The only thing that really matters is what your end-user
sees

Measuring real-world performance of your end-users is
tough

USER
(circa 2010)

var elapsedTime = Date.now() - startTime;

Boomerang: github.com/lognormal/boomerang

https://github.com/lognormal/boomerang

W3C WEBPERF WORKING
GROUP

www.w3.org/2010/webperf
Founded 2010 to give developers the ability to assess and
understand performance characteristics of their web apps

The mission of the Web Performance Working Group is to
provide methods to measure aspects of application

performance of user agent features and APIs

Microsoft, Google, Mozilla, Opera, Facebook, Netflix, etc

http://www.w3.org/2010/webperf/

WORKING GROUP GOALS
Expose information that was not previously available

Give developers the tools they need to make their
applications more efficient

Little to no overhead

Easy to understand APIs

PUBLISHED SPECS
Navigation Timing (NT): Page load timings

Resource Timing (RT): Resource load timings

User Timing (UT): Custom site events and measurements

Performance Timeline: Access NT/RT/UT and future
timings from one API

High Resolution Time: Better Date.now()

PUBLISHED SPECS (PT 2)
Page Visibility: Visibility state of document

Timing control for script-based animations:
requestAnimationFrame()

Efficient Script Yielding: More efficient than
setTimeout(...,0): setImmediate()

UPCOMING SPECS
Beacon: Async send data (even after page is closed)

Resource Hints: rel="preconnect" rel="preload"

Resource Priorities: lazyload

Frame Timing: Animation timings

Navigation Error Logging: For failed navigations

PARTICIPATE!
www.w3.org/2010/webperf

public-web-perf@w3.org

github.com/w3c/web-performance

http://www.w3.org/2010/webperf/
https://github.com/w3c/web-performance
mailto:public-web-perf@w3.org

NAVIGATIONTIMING
www.w3.org/TR/navigation-timing

Goal: Expose accurate performance metrics describing your
visitor's page load experience

Current status: Recommendation

Upcoming: NavigationTiming2

http://www.w3.org/TR/navigation-timing/

HOW IT WAS DONE
BEFORE

(this isn't accurate)

<html><head><script>
var start = new Date().getTime();
function onLoad {
 var pageLoadTime = (new Date().getTime()) - start;
}
body.addEventListener(“load”, onLoad, false);
</script>...</html>

WHAT'S WRONG WITH
THIS?

It only measures the time from when the HTML gets
parsed to when the last sub-resource is downloaded

It misses the initial DNS lookup, TCP connection and HTTP
request wait time

Date().getTime() is not reliable

INTERLUDE
DOMHighResTimeStamp

Date DOMHighResTimeStamp
Accessed Via Date().getTime()performance.now()
Resolution millisecond sub-millisecond
Start Unix epoch navigationStart
Monotonically
Non-
decreasing

No Yes

Affected by
user's clock

Yes No

Example 1420147524606 3392.275999998674

NAVIGATIONTIMING
window.performance.navigation

interface PerformanceNavigation {
 const unsigned short TYPE_NAVIGATE = 0;
 const unsigned short TYPE_RELOAD = 1;
 const unsigned short TYPE_BACK_FORWARD = 2;
 const unsigned short TYPE_RESERVED = 255;
 readonly attribute unsigned short type;
 readonly attribute unsigned short redirectCount;
};

NAVIGATIONTIMING
window.performance.timing

interface PerformanceTiming {
 readonly attribute unsigned long long navigationStart;
 readonly attribute unsigned long long unloadEventStart;
 readonly attribute unsigned long long unloadEventEnd;
 readonly attribute unsigned long long redirectStart;
 readonly attribute unsigned long long redirectEnd;
 readonly attribute unsigned long long fetchStart;
 readonly attribute unsigned long long domainLookupStart;
 readonly attribute unsigned long long domainLookupEnd;
 readonly attribute unsigned long long connectStart;
 readonly attribute unsigned long long connectEnd;
 readonly attribute unsigned long long secureConnectionStart;
 readonly attribute unsigned long long requestStart;
 readonly attribute unsigned long long responseStart;
 readonly attribute unsigned long long responseEnd;
 readonly attribute unsigned long long domLoading;
 readonly attribute unsigned long long domInteractive;
 readonly attribute unsigned long long domContentLoadedEventStart;
 readonly attribute unsigned long long domContentLoadedEventEnd;
 readonly attribute unsigned long long domComplete;
 readonly attribute unsigned long long loadEventStart;
 readonly attribute unsigned long long loadEventEnd;
};

NAVIGATIONTIMING

HOW TO USE
function onLoad() {
 if ('performance' in window && 'timing' in window.performance) {
 setTimeout(function() {
 var t = window.performance.timing;
 var ntData = {
 redirect: t.redirectEnd - t.redirectStart,
 dns: t.domainLookupEnd - t.domainLookupStart,
 connect: t.connectEnd - t.connectStart,
 ssl: t.secureConnectionStart ? (t.connectEnd - secureConnectionStart) : 0,
 request: t.responseStart - t.requestStart,
 response: t.responseEnd - t.responseStart,
 dom: t.loadEventStart - t.responseEnd,
 total: t.loadEventEnd - t.navigationStart
 };
 }, 0);
 }
}

THEN WHAT?
DIY / Open Source

Send this data to your backend for logging

Show any page's timings via a bookmarklet:

Boomerang:

Boomcatch:

BoomerangExpress:

SiteSpeed.io:

Piwik:

kaaes.github.io/timing

github.com/lognormal/boomerang

cruft.io/posts/introducing-boomcatch

github.com/andreas-
marschke/boomerang-express

www.sitespeed.io

github.com/piwik/piwik

http://cruft.io/posts/introducing-boomcatch/
http://kaaes.github.io/timing/
https://github.com/piwik/piwik/
https://github.com/lognormal/boomerang
http://www.sitespeed.io/
https://github.com/andreas-marschke/boomerang-express

KAAES TIMING
kaaes.github.io/timing

http://kaaes.github.io/timing/

BOOMERANG
github.com/lognormal/boomerang

https://github.com/lognormal/boomerang

BOOMCATCH
Collects beacons + maps (statsd) + forwards (extensible)

cruft.io/posts/introducing-boomcatch

http://cruft.io/posts/introducing-boomcatch/

BOOMERANGEXPRESS
Collects beacons

github.com/andreas-marschke/boomerang-express

https://github.com/andreas-marschke/boomerang-express

SITESPEED.IO
www.sitespeed.io

http://www.sitespeed.io/

PIWIK
"generation time" = responseEnd - requestStart

github.com/piwik/piwik

https://github.com/piwik/piwik/

COMMERCIAL
SOASTA mPulse:

Google Analytics Site Speed:

New Relic Browser:

NeuStar WPM:

SpeedCurve:

soasta.com

google.com/analytics

newrelic.com/browser-monitoring

neustar.biz

speedcurve.com

http://soasta.com/
http://newrelic.com/browser-monitoring
http://www.google.com/analytics/
http://speedcurve.com/
http://www.neustar.biz/

SOASTA MPULSE
soasta.com

http://soasta.com/

GOOGLE ANALYTICS SITE
SPEED

google.com/analytics

http://www.google.com/analytics/

NEW RELIC BROWSER
newrelic.com/browser-monitoring

http://newrelic.com/browser-monitoring

NEUSTAR WPM
neustar.biz

http://www.neustar.biz/

SPEEDCURVE
Runs on top of WebPageTest

speedcurve.com

http://speedcurve.com/

NAVIGATIONTIMING
caniuse.com/#feat=nav-timing

http://caniuse.com/#feat=nav-timing

TIPS
Use fetchStart instead of navigationStart unless
you're interested in redirects, tab init time, etc

loadEventEnd will be 0 until after the body's load event
has finished (so you can't measure it in the load event)

We don't have an accurate way to measure the "request
time", as "requestEnd" is invisible to us (the server sees
it)

secureConnectionStart isn't available in IE

TIPS

TIPS (PT 2)
iOS still doesn't have support

Home page scenarios: Timestamps up through
responseEnd event may be 0 duration because some
browsers speculatively pre-fetch home pages (and don't
report the correct timings)

If possbile, do any beaconing of the data as soon as
possible. Browser onbeforeunload isn't 100% reliable
for sending data

Single-Page Apps: You'll need a different solution for
"navigations" (Boomerang + plugin coming soon)

NAVIGATIONTIMING2
www.w3.org/TR/navigation-timing-2

DRAFT
Builds on NavigationTiming:

Support for Performance Timeline

Support for High Resolution Time

timing information for link negotiation

timing information for prerender

http://www.w3.org/TR/navigation-timing-2/

RESOURCETIMING
www.w3.org/TR/resource-timing

Goal: Expose sub-resource performance metrics

Current status: Working Draft

http://www.w3.org/TR/resource-timing/

INSPIRATION

HOW IT WAS DONE
BEFORE

For dynamically inserted content, you could time how long it
took from DOM insertion to the element’s onLoad event

HOW IT WAS DONE
BEFORE

(this isn't practical for all content)

var start = new Date().getTime();
var image1 = new Image();
var resourceTiming = function() {
 var now = new Date().getTime();
 var latency = now - start;
 alert("End to end resource fetch: " + latency);
};

image1.onload = resourceTiming;
image1.src = 'http://www.w3.org/Icons/w3c_main.png';

WHAT'S WRONG WITH
THIS?

It measures end-to-end download time plus rendering
time

Not practical if you want to measure every resource on
the page (IMG, SCRIPT, LINK rel="css", etc)

Date().getTime() is not reliable

RESOURCETIMING
window.performance.getEntries()

interface PerformanceEntry {
 readonly attribute DOMString name;
 readonly attribute DOMString entryType;
 readonly attribute DOMHighResTimeStamp startTime;
 readonly attribute DOMHighResTimeStamp duration;
};

interface PerformanceResourceTiming : PerformanceEntry {
 readonly attribute DOMString initiatorType;

 readonly attribute DOMHighResTimeStamp redirectStart;
 readonly attribute DOMHighResTimeStamp redirectEnd;
 readonly attribute DOMHighResTimeStamp fetchStart;
 readonly attribute DOMHighResTimeStamp domainLookupStart;
 readonly attribute DOMHighResTimeStamp domainLookupEnd;
 readonly attribute DOMHighResTimeStamp connectStart;
 readonly attribute DOMHighResTimeStamp connectEnd;
 readonly attribute DOMHighResTimeStamp secureConnectionStart;
 readonly attribute DOMHighResTimeStamp requestStart;
 readonly attribute DOMHighResTimeStamp responseStart;
 readonly attribute DOMHighResTimeStamp responseEnd;
};

INTERLUDE:
PERFORMANCETIMELINE

www.w3.org/TR/performance-timeline

Goal: Unifying interface to access and retrieve performance
metrics

Current status: Recommendation

http://www.w3.org/TR/performance-timeline/

PERFORMANCETIMELINE
window.performance

getEntries(): Gets all entries in the timeline

getEntriesByType(type): Gets all entries of the
specified type (eg resource, mark, measure)

getEntriesByName(name): Gets all entries with the
specified name (eg URL or mark name)

RESOURCETIMING

HOW TO USE
window.performance.getEntriesByType("resource")

[0]
{
 connectEnd: 566.357000003336,
 connectStart: 566.357000003336,
 domainLookupEnd: 566.357000003336,
 domainLookupStart: 566.357000003336,
 duration: 4.275999992387369,
 entryType: "resource",
 fetchStart: 566.357000003336,
 initiatorType: "img",
 name: "https://www.foo.com/foo.png",
 redirectEnd: 0,
 redirectStart: 0,
 requestStart: 568.4959999925923,
 responseEnd: 570.6329999957234,
 responseStart: 569.4220000004862,
 secureConnectionStart: 0,
 startTime: 566.357000003336
}

INITIATORTYPE
localName of that element:

img

link

script

css: url(), @import

xmlhttprequest

USE CASES
Send all resource timings to your backend analytics

Raise an analytics event if any resource takes over X
seconds to download (and trend this data)

Watch specific resources (eg third-party ads or analytics)
and complain if they are slow

BUFFER
There is a ResourceTiming buffer (per IFRAME) that stops
filling after its size limit is reached (default: 150 entries)

Listen for the onresourcetimingbufferfull event

setResourceTimingBufferSize(n) and
clearResourceTimings() can be used to modify it

Don't just:
setResourceTimingBufferSize(99999999) as this
can lead to browser memory growing unbound

COMPRESSING
Each resource is ~ 500 bytes JSON.stringify()'d

 tells us there's 99 HTTP resources on
average, per page, with an average URL length of 85 bytes

That means you could expect around 45 KB of
ResourceTiming data per page load

Compress it:

HTTP Archive

nicj.net/compressing-resourcetiming

http://httparchive.org/
http://nicj.net/compressing-resourcetiming/

COMPRESSING
Converts:

{
 "responseEnd":323.1100000002698,
 "responseStart":300.5000000000000,
 "requestStart":252.68599999981234,
 "secureConnectionStart":0,
 "connectEnd":0,
 "connectStart":0,
 "domainLookupEnd":0,
 "domainLookupStart":0,
 "fetchStart":252.68599999981234,
 "redirectEnd":0,
 "redirectStart":0,
 "duration":71.42400000045745,
 "startTime":252.68599999981234,
 "entryType":"resource",
 "initiatorType":"script",
 "name":"http://foo.com/js/foo.js"
}

COMPRESSING
To:

{
 "http://": {
 "foo.com/": {
 "js/foo.js": "370,1z,1c",
 "css/foo.css": "48c,5k,14"
 },
 "moo.com/moo.gif": "312,34,56"
 }
}

Overall, compresses ResourceTiming data down to 15% of
its original size

github.com/nicjansma/resourcetiming-compression.js

https://github.com/nicjansma/resourcetiming-compression.js

TIMING-ALLOW-ORIGIN
By default, cross-origin resources expose timestamps for
only the fetchStart and responseEnd attributes

This is to protect your privacy (attacker can’t load random
URLs to see where you’ve been)

Override by setting Timing-Allow-Origin header

Timing-Allow-Origin = "Timing-Allow-Origin"
":" origin-list-or-null | "*"

If you have a CDN, use this

Note: Third-party libraries (ads, analytics, etc) must set
this on their servers. 5% do according to HTTP Archive.
Google, Facebook, Disqus, mPulse, etc.

BLOCKING TIME
Browsers will open a limited number of connections to
each unique origin (protocol/server name/port)

If there are more resources than the # of connections, the
later resources will be "blocking", waiting for their turn to
download

duration includes Blocking time!

So in general, don't use duration, but this is all you get
with cross-origin resources.

BLOCKING TIME
Calculate:

var waitTime = 0;
if (res.connectEnd && res.connectEnd === res.fetchStart)
{
 waitTime = res.requestStart - res.connectEnd;
}
else if (res.domainLookupStart)
{
 waitTime = res.domainLookupStart - res.fetchStart;
}

DIY / OPEN SOURCE
Compress + send this data to your backend for logging

Show any page's resources via a bookmarklet:

Heatmap bookmarklet / Chrome extension:

Nurun's Performance Bookmarklet:

Boomerang supports ResourceTiming:

github.com/andydavies/waterfall

github.com/zeman/perfmap

github.com/nurun/performance-bookmarklet

github.com/lognormal/boomerang

https://github.com/andydavies/waterfall
https://github.com/nurun/performance-bookmarklet
https://github.com/lognormal/boomerang
https://github.com/zeman/perfmap

ANDY DAVIES'
WATERFALL.JS
github.com/andydavies/waterfall

https://github.com/andydavies/waterfall

MARK ZEMAN'S PERFMAP
github.com/zeman/perfmap

https://github.com/zeman/perfmap

NURUN'S PERFORMANCE
BOOKMARKLET

github.com/nurun/performance-bookmarklet

https://github.com/nurun/performance-bookmarklet

COMMERCIAL
SOASTA mPulse:

New Relic Browser:

App Dynamics Web EUEM:

soasta.com

newrelic.com

appdynamics.com

http://appdynamics.com/
http://newrelic.com/
http://soasta.com/

SOASTA MPULSE
soasta.com

http://soasta.com/

NEW RELIC BROWSER
newrelic.com/browser-monitoring

http://newrelic.com/browser-monitoring

APP DYNAMICS WEB
EUEM

appdynamics.com

http://appdynamics.com/

RESOURCETIMING
caniuse.com/#feat=resource-timing

http://caniuse.com/#feat=resource-timing

TIPS
For many sites, most of your content will not be same-
origin, so ensure all of your CDNs and third-party libraries
send Timing-Allow-Origin

What isn't included in ResourceTiming:

The root HTML page (get this from
window.performance.timing)

Transfer size or content size (privacy concerns)

HTTP code (privacy concerns)

Content that loaded with errors (eg 404s)

TIPS (PT 2)
If you're going to be managing the ResourceTiming buffer,
make sure no other scripts are managing it as well

The duration attribute includes Blocking time (when a
resource is behind other resources on the same socket)

Each IFRAME will have its own ResourceTiming data, and
those resources won't be included in the parent
FRAME/document. So you'll need to traverse the
document frames to get all resources. See

 for
an example

about:blank, javascript: URLs will be seen in RT data

github.com/nicjansma/resourcetiming-compression.js

https://github.com/nicjansma/resourcetiming-compression.js

USERTIMING
www.w3.org/TR/user-timing

Goal: Standardized interface to note timestamps ("marks")
and durations ("measures")

Current status: Recommendation

http://www.w3.org/TR/user-timing/

HOW IT WAS DONE
BEFORE

var start = new Date().getTime();
// do stuff
var now = new Date().getTime();
var duration = now - start;

WHAT'S WRONG WITH
THIS?

Nothing really, but...

Date().getTime() is not reliable

We can do better!

USERTIMING
window.performance

partial interface Performance {
 void mark(DOMString markName);

 void clearMarks(optional DOMString markName);

 void measure(DOMString measureName, optional DOMString startMark,
 optional DOMString endMark);

 void clearMeasures(optional DOMString measureName);
};

HOW TO USE - MARK
// mark
performance.mark("start");
performance.mark("end");

performance.mark("another");
performance.mark("another");
performance.mark("another");

HOW TO USE - MARK
// retrieve
performance.getEntriesByType("mark");

[
 {
 "duration":0,
 "startTime":150384.48100000096,
 "entryType":"mark",
 "name":"start"
 },
 {
 "duration":0,
 "startTime":150600.5250000013,
 "entryType":"mark",
 "name":"end"
 },
 ...
]

HOW TO USE - MEASURE
// measure
performance.mark("start");
// do work
performance.mark("start2");

// measure from "now" to the "start" mark
performance.measure("time to do stuff", "start");

// measure from "start2" to the "start" mark
performance.measure("time from start to start2", "start", "start2");

HOW TO USE - MEASURE
// retrieval - specific
performance.getEntriesByName("time from start to start2", "measure");

[
 {
 "duration":4809.890999997151,
 "startTime":145287.66500000347,
 "entryType":"measure",
 "name":"time from start to start2"
 }
]

BENEFITS
Uses the PerformanceTimeline, so marks and
measures are in the PerformanceTimeline along with
other events

Uses DOMHighResTimestamp instead of Date so sub-
millisecond, monotonically non-decreasing, etc

More efficient, as the native browser runtime can do math
quicker and store things more performantly than your
JavaScript runtime can

USE CASES
Easy way to add profiling events to your application

Note important scenario durations in your Performance
Timeline

Measure important durations for analytics

Browser tools are starting to add support for showing
these

USERTIMING
caniuse.com/#feat=user-timing

http://caniuse.com/#feat=user-timing

USERTIMING.JS
Polyfill that adds UserTiming support to browsers that do
not natively support it.

UserTiming is accessed via the PerformanceTimeline, and
requires window.performance.now() support, so
UserTiming.js adds a limited version of these interfaces if
the browser does not support them

github.com/nicjansma/usertiming.js

https://github.com/nicjansma/usertiming.js

DIY / OPEN SOURCE
Compress + send this data to your backend for logging

WebPageTest sends UserTiming to Google Analytics,
Boomerang and SOASTA mPulse

COMMERCIAL
SOASTA mPulse:

WebPageTest:

soasta.com

webpagetest.org

http://soasta.com/
http://webpagetest.org/

TIPS
Not the same as Google Analytic's "User Timings" API

(_trackTiming(...))

YOUR JOB
MAKE IT FAST!

LINKS
Presentation:

Code:

slideshare.net/nicjansma

github.com/nicjansma/talks
Thanks - Nic Jansma - - nicj.net @NicJ

http://www.slideshare.net/nicjansma
https://twitter.com/NicJ
https://github.com/nicjansma/talks/
http://nicj.net/

