
FORENSIC TOOLS
FOR IN-DEPTH
PERFORMANCE

INVESTIGATIONS
 | | | nic jansma SOASTA nicj.net @nicj

 | | | philip tellis SOASTA bluesmoon.info @bluesmoon

http://nicj.net/
http://soasta.com/
http://nicj.net/
http://twitter.com/nicj
http://bluesmoon.info/
http://soasta.com/
http://bluesmoon.info/
http://twitter.com/bluesmoon

WHO ARE WE?

Nic Jansma

SOASTA

Philip Tellis

SOASTA

WHAT WE DO
 is a Real User Monitoring (RUM) tool for

measuring page load performance
SOASTA mPulse

http://www.soasta.com/mpulse/

WHAT WE DO
We have a JavaScript library (Boomerang) that captures
performance metrics, page load characteristics, XHRs, SPA
navigations, and more

We are a third-party script provider

We serve boomerang.js from a CDN to our customers
using a script loader snippet they include in their HTML

We can update our customer's boomerang.js version (if
they ask)

Our script runs in their page so we have to be super-
duper careful

BOOMERANG
Created by Philip Tellis @ Yahoo

Gathers performance metrics and characteristics of the
page load and beacons that data to your server (aka RUM)

Open-source project (with contributions from SOASTA)

https://github.com/lognormal/boomerang/

https://github.com/lognormal/boomerang/

NON-BLOCKING SCRIPT
LOADER PATTERN

Better than <script> nodes or async

Uses an anonymous IFRAME

lognormal.com/blog/2012/12/12/the-script-loader-pattern

http://www.lognormal.com/blog/2012/12/12/the-script-loader-pattern/

(function(url){
 // Section 1
 var dom,doc,where,iframe = document.createElement('iframe');
 iframe.src = "javascript:void(0)";
 iframe.title = ""; iframe.role="presentation"; // a11y
 (iframe.frameElement || iframe).style.cssText = "width: 0; height: 0; border: 0"
 where = document.getElementsByTagName('script');
 where = where[where.length - 1];
 where.parentNode.insertBefore(iframe, where);

 // Section 2
 try {
 doc = iframe.contentWindow.document;
 } catch(e) {
 dom = document.domain;
 iframe.src="javascript:var d=document.open();d.domain='"+dom+"';void(0);";
 doc = iframe.contentWindow.document;
 }
 doc.open()._l = function() {
 var js = this.createElement("script");
 if(dom) this.domain = dom;
 js.id = "js-iframe-async";
 js.src = url;
 this.body.appendChild(js);
 };
 doc.write('<body onload="document._l();">');
 doc.close();
})('http://some.site.com/script.js');

CUSTOMER CONCERNS
What happens when our customers think our third-party

script is causing an issue on their site?

We bust out our favorite tools!

SCENARIO #1
Aren't you supposed to be non-blocking?

Customer:

"Hi guys, So, I was running some WPT tests today and saw
this… I thought that this was supposed to be non-

blocking. If anyone sees this, they'll hang me up by my
heels."

Screenshot #2 from our customer:

STEP #1
REPRODUCE THE ISSUE

TOOL #1
WEBPAGETEST

For reproducing real-world page load scenarios

For testing Single Points of Failure (SPOF)

Can give you: waterfalls, TCP dumps, network and
processing breakdowns, traces, net logs, screenshots,
videos, Page Speed score, comparisons and more

STEP #1
REPRODUCE THE ISSUE

The customer shared their WebPageTest results URL, and
we looked closer at the test pass

Out of the 9 runs, 2 showed what appeared to be
boomerang.js blocking other downloads

Repro #1:

Repro #1 Larger view

Repro #2:

STEP #2
DIVE DEEPER

We looked at the 9 test runs, and found 3 more that had
some sort of period where nothing happens

The tests show periods of time where the CPU is 100%, and
bandwidth (bytes transferred) drops to 0 for 1-4 seconds.

Repro #1 and #2 show 100% CPU and no bandwidth for
over a second:

Non-repros: boomerang.js loaded quickly, but two images
appeared to "hang"

Non-repros: boomerang.js loaded much earlier, but other
content appears to "hang"

Non-repros: Other content "hanging"

WebPageTest has many options for diving deeper

WEBPAGETEST
PROCESSING BREAKDOWN

Gives a breakdown of main thread processing and timeline

PROCESSING
BREAKDOWN

PROCESSING
BREAKDOWN

TOOL #2
TCPDUMP

Packet capturing, viewing and analysis

libpcap is a portable library for capturing

TCPDUMP
tcpdump.org/manpages/tcpdump.1.html

tcpdump -nS

http://www.tcpdump.org/manpages/tcpdump.1.html

TOOL #3
WIRESHARK

Higher-level analysis of tcpdump

WIRESHARK

TOOL #4
CLOUDSHARK

Analyze PCAP (tcpdump) files in your browser

CLOUDSHARK

At this point, we downloaded the WebPageTest tcpdump
files to dive deeper into the data

In all of the runs that showed a period of "no progress", we
found zero network activity

(Repro #1)

We expect the OS network stack to continue TCP
communications even if the browser was "blocked" on a

script

CLOUDSHARK

(Repro #2)

TOOL #5
BROWSER DEV TOOLS

TOOL #5
BROWSER DEV TOOLS

The usefulness of Browser Dev Tools could be a talk on its
own, but we'll give some highlights during our investigations

TOOL #6
CHROME TRACING

chrome://tracing

WebPageTest provides Chrome Traces

CHROME TRACE
Repro #2:

CHROME TRACE
Repro #2:

NETLOG
NetLog: Chrome’s network logging system

https://www.chromium.org/developers/design-
documents/network-stack/netlog

https://www.chromium.org/developers/design-documents/network-stack/netlog

REPRO #2: NETLOG
{"params":{"load_flags":2163712,"method":"GET","priority":"LOWEST",
 "url":"http://c.go-mpulse.net/boomerang/KQTS5-4NBTD-EYGLE-64UYR-S5892"},
 "phase":1,"source":{"id":588,"type":1},"time":"5454412310","type":91},
{"phase":1,"source":{"id":588,"type":1},"time":"5454412310","type":93},
{"phase":2,"source":{"id":588,"type":1},"time":"5454412310","type":93},
{"phase":1,"source":{"id":588,"type":1},"time":"5454412310","type":101},
{"phase":2,"source":{"id":588,"type":1},"time":"5454412310","type":101},
{"phase":1,"source":{"id":588,"type":1},"time":"5454412310","type":102},
{"params":{"byte_count":1460},"phase":0,"source":{"id":275,"type":4},
 "time":"5454412311","type":62},
{"phase":2,"source":{"id":529,"type":1},"time":"5454412311","type":143},
{"phase":1,"source":{"id":529,"type":1},"time":"5454412311","type":143},
{"params":{"byte_count":443},"phase":0,"source":{"id":275,"type":4},
 "time":"5454412313","type":62},
{"phase":2,"source":{"id":529,"type":1},"time":"5454412313","type":143},
{"phase":1,"source":{"id":529,"type":1},"time":"5454412313","type":143},
{"phase":2,"source":{"id":275,"type":4},"time":"5454412313","type":37},
{"phase":2,"source":{"id":529,"type":1},"time":"5454412313","type":143},

STEP #2
DIVE DEEPER

It will be great to (re)prove that our script loader works even
if our CDN is down, or if there are delays in the network

How can we do this? There are a couple tools that can help
with Single Point of Failure (SPOF) testing

WEBPAGETEST SPOF
blackhole.webpagetest.org drops all traffic

setDnsName c.go-mpulse.net blackhole.webpagetest.org
navigate our-customer.com

WEBPAGETEST SPOF
No issues with blocking our CDN c.go-mpulse.net

Let's try to do SPOF on our local machine as well

BROWSER DEV TOOLS
WATERFALL

TOOL #7
/etc/hosts

Great for quickly redirecting traffic to your local machine

Or for sending traffic to a blackhole

On Windows:
C:\windows\system32\drivers\etc\hosts

/ETC/HOSTS
blackhole.webpagetest.org == 72.66.115.13

72.66.115.13 apis.google.com
72.66.115.13 www.google-analytics.com
72.66.115.13 c.go-mpulse.net

TOOL #8
FIDDLER

For monitoring all traffic from desktop or mobile devices

For injecting different content into live sites

For artifically delaying traffic

FIDDLER

FIDDLER SPOF

FIDDLER SPOF

SCENARIO #1
Conclusion:

Able to reproduce the issue on WebPageTest that day, but
not later

Saw periods of no CPU activity

Saw periods of no TCP activity

Boomerang had already reached the network interface,
so something else was blocking it on the box

Customer had multiple tag managers

SCENARIO #1
Conclusion:

We ran SPOF checks with WebPageTest, /etc/hosts,
and Fiddler

Via WPT and Fiddler SPOF, we show our script is non-
blocking

SCENARIO #2
PRE-RENDER SHENANIGANS

Customer:

"I'm seeing pages that should match showing up in No
Page Group again"

You can define rules in mPulse for URLs to be matched to
a Page Group dimension

Customer was seeing a high number of hits to a (No
Page Group) category that should have matched a URL

PAGE GROUPS

TOOL #9
RUM

Real User Monitoring (RUM) tools

Real world data

Look at data in aggregate

DISCLAIMER
We obviously work for SOASTA, and mPulse is our RUM product

RUM
AGGREGATE DATA

RUM lets you view your real-world customer data from an
aggregate level

RUM
What are the most common causes of (No Page Group)?

iOS Mobile Safari sticks out:

RUM WATERFALLS
RUM Waterfalls let you look at real-world individual page

loads

STEP #1
REPRODUCE THE ISSUE

From RUM data, the issue was most common on the
home page from iOS devices.

Time to reproduce the issue on an iPad!

FIDDLER
One great use of Fiddler is to monitor external browser

traffic without having Browser Dev Tools open (including
mobile traffic!)

At this point, we sat with an iPad, reloading the home page
hundreds of times to try to get a repro...

And tried...

And tried...

... an hour later, after trying many ways of loading the home
page, we finally got a hit!

THE REPRO
It just so happens I was typing www.customer.com in the
address bar, but got a phone call, so didn't hit Go yet

Saw a beacon go through without a Page Group attached,
but clearly for the customer's home page

Ran the same scenario again, same result. Repro!

Mobile Safari was pre-rendering the page I was typing
into the address bar

STEP #2
DIVE DEEPER

Now that we had a repro, we were able to narrow down the
issue to a bug in Boomerang that didn't deal with pre-

render state transitions properly.

The fix was pretty straightforward, but we needed to test it.

FIX VALIDATION
Fiddler allows you to inject your own content in place other

live content on any host

We injected our fixed version into the customer' site, and
validated that it worked

SCENARIO #2
Conclusion:

We used RUM to narrow down the problem

We used RUM waterfalls to validate the problem happens
in real-world data

We used tools like Fiddler help reproduce the issue

We used tools like Fiddler to help validate the fix

SCENARIO #3
Stop messing with my readyState

SCENARIO #3
We were loading www.customer.com and found that
Boomerang wasn't reliably sending a Page Load beacon

Boomerang should run on window.onload and fire a
beacon, but this wasn't happening

STEP #1
REPRODUCE THE ISSUE

After injecting a debug version of Boomerang (via Fiddler)
onto the customer's site, we found some interesting
logging statements

For example, document.readyState == "loading"
even though window.onload had fired

window.pageshow was firing before window.onload --
window.onload should be first

STEP #2
DIVE DEEPER

Our guess was that there was a script running on our
customer's site that was messing with some of the

document loading states, but had to prove it

One way is to fetch, unminify and analyze all of the site's
JavaScript, but there are a couple easier ways if you want to

use the Browser Dev Tools to work for you

TOOL #9
TAMPERMONKEY

"Userscript" manager for Chrome, Opera and Android

Allows you to inject your own code in other sites without a
proxy

We started out with a guess that something was changing
window.onload or document.readyState

EASY WAY TO SEE
One way of modifying pre-existing DOM properties is via

Object.defineProperty

Inject this in the page to find anyone using it:

Object.defineProperty = function(obj, prop, descriptor) {
 debugger;
};

HIT!

Chrome/IE/FF pretty-print (unminify) is the greatest thing

Chrome/IE/FF pretty-print (unminify) is the greatest thing

We also a similar change of document.readyState

Object.defineProperty(
 document,
 "readyState",
 {
 get:
 function()
 {
 return document.someOtherReadyState;
 }
 });

SCENARIO #3
Conclusion:

Changes to window.onload and
document.readyState were intentional by another
third-party script for FEO optimization

We worked with that third-party to ensure our
performance instrumentation wouldn't be affected

SCENARIO #4
Premature optimization is the root of all good intentions

SCENARIO #4
Our mPulse beacons are protected against CSRF by a
token and timestamp that gets sent with each beacon

The CSRF token times out after 5 minutes

A new token/timestamp is fetched from our servers every
5 minutes to ensure long-running apps can continue to
send beacons

SCENARIO #4
We were finding that there was an increasing occurence
of the timestamp being "too old" -- that the CSRF
timestamp on beacons were over 5 minutes old

These beacons get dropped, but we needed to figure out
why

STEP #1
REPRODUCE THE ISSUE

Every beacon that gets sent to mPulse is permanently
persisted (stripped of PII), so we can easily go back and
investigate the raw data

Every dropped beacon is logged along with why it was
dropped

These dropped beacons don't hit our reporting
infrastructure, but we still want to be able to look for
trends among the dropped beacons

TOOL #10: NODEJS

Great for writing throw-away analysis scripts

JavaScript lets you quickly iterate

Tons of NPM modules for command-line use

NODEJS
We use NodeJS for many things at SOASTA:

boomerang.js build, deployment and testing
(Grunt/Jenkins)

Infrastructure tools

Raw data analysis

NODEJS
Useful NodeJS NPM modules for command-line scripts:

jetty: ANSI control sequences

fast-stats: Statistical analysis of numeric datasets

cli-table: Tables for the command-line

commander: Command-line argument parsing

line-by-line: Reads large files without buffering into
memory

STEP #2
DIVE DEEPER

We fetched gigabytes of dropped-beacon log files, and
started doing some statistical analysis on the causes

DROPPED-BEACON
BREAKDOWN

We can break down the dropped-beacons data by
dimensions to help guide us towards finding a repro:

By browser

By OS

By beacon type

By URL

DROPPED-BEACON
BREAKDOWN

NodeJS cli-table output. By browser:
┌──────────────────────────────┬──────────┬──────────┐
│ URL │ Count │ % │
├──────────────────────────────┼──────────┼──────────┤
│ IE/7.0 │ 1559 │ 66.65 │
├──────────────────────────────┼──────────┼──────────┤
│ IE/9.0 │ 293 │ 12.53 │
├──────────────────────────────┼──────────┼──────────┤
│ Safari/5.1.9 │ 283 │ 12.10 │
├──────────────────────────────┼──────────┼──────────┤

DROPPED-BEACON
BREAKDOWN

NodeJS cli-table output. By beacon type:
┌──────────────────────────────┬──────────┬──────────┐
│ URL │ Count │ % │
├──────────────────────────────┼──────────┼──────────┤
│ xhr │ 2222 │ 95.00 │
├──────────────────────────────┼──────────┼──────────┤
│ navigation │ 37 │ 1.58 │
├──────────────────────────────┼──────────┼──────────┤
│ ... │ 7 │ 0.30 │
├──────────────────────────────┼──────────┼──────────┤
│ Total │ 2339 │ 100 │
└──────────────────────────────┴──────────┴──────────┘

DROPPED-BEACON
BREAKDOWN

NodeJS cli-table output. By URL:
┌───────────────────────────────────────┬──────────┬──────────┐
│ URL │ Count │ % │
├───────────────────────────────────────┼──────────┼──────────┤
│ http://www.customer.com/api/foo │ 2187 │ 93.50 │
├───────────────────────────────────────┼──────────┼──────────┤
│ http://www.customer.com/anotherurl │ 9 │ 0.38 │
├───────────────────────────────────────┼──────────┼──────────┤

THE REPRO
From our raw data, the "too old" beacons were mostly
caused by IE 7 and IE 9, from XHRs to the customer's
/api/foo endpoint

TOOL #11
VIRTUALIZATION

VirtualBox, VMWare, Parallels, etc

All great ways to test older browsers

 has VMs for IE 6, 7, 8, 9, 10, 11 and Edgemodern.ie

http://modern.ie/

THE REPRO
We sat our VirtualBox IE 9 browser on www.customer.com

for a while, watching XHRs and beacons flow past

THE REPRO
Both IE 9 Developer Tools and Fiddler showed something

interesting:

THE REPRO
IE 9 Developer Tools showing aborted requests to our
injected <javascript> that updates the token and

timestamp:

SCENARIO #4
Conclusion:

We had recently made a change in boomerang.js to
quickly remove the <javascript> node that was
fetching the updated CSRF token and timestamp

In some older browsers, this causes the network request
to abort

We were able to validate the fix (keeping the
<javascript> node around for a bit) via the same tools

SCENARIO #5
The many ways to send a beacon

... and the many ways to not send a beacon

SCENARIO #5
We send the boomerang.js beacon to mPulse via several

methods:

If the payload is small, we create a hidden IMG element
with a img.src containing the payload in the query string

If the payload is large (greater than 2083 bytes), we create
a hidden FORM element and call form.submit() on it

SCENARIO #5
Windows 10 and Edge had just been released, and a

customer reported that their site was hanging in Edge on
some pages, and that it no longer did when boomerang.js

was removed from their site

We had tested Windows 10 Techincal Preview (the previous
Edge build) thoroughly, but something in the final release

was causing problems

STEP #1
REPRODUCE THE ISSUE

Sure enough, loading customer.com would hang Edge for
up to 30 seconds.

Since the browser was hung, it was hard to use the Edge
debugger

STEP #2
DIVE DEEPER

Time to dive into system-level tracing!

TOOL #12
EVENT TRACING FOR WINDOWS

Event Tracing for Windows (ETW) is built into all versions
of Windows from XP onward

Enables the OS and applications to efficiently generate
runtime tracing events

xperf and the newer Windows Performance Analyzer
(WPA) are tools used to generate ETW traces and then
analyze them

ETW
Available tracing:

CPU usage

Disk usage

Hard faults

DPCs/ISRs

TCP

Sampled Profiling

Custom app events (IE7+,
Chrome)

With stacks!

ETW - DOWNLOADING
Part of the Windows Performance Toolkit

Included in the

Friendly interface via UIforETW:

Windows Assessment and Deployment Kit

github.com/google/UIforETW

https://www.microsoft.com/en-US/download/details.aspx?id=39982
https://github.com/google/UIforETW

ETW - USAGE
Simple trace of system evenst:

xperf.exe -on latency -stackwalk profile
// [run scenario]
xperf.exe -stop -d myscenario.etl

ETW - XPERFVIEW
1. Timeline of events

2. Filter processes

3. Graph selection

XPERF - SUMMARY TABLES
All of the graphs can be
interacted with - zoom,
popups, right-clicks

Summary Tables show data
in tabular form

ETW - BROWSER EVENTS
Internet Explorer and Chrome both fire ETW events that you

can overlay in the charts and see in the tables

ETW - IE EVENTS
Microsoft-IE events:

CMarkup_OnLoadStatusDone:

Page load is complete

CDoc_OnPaint: Paints

CDwnBindData_Bind:

Downloads

+ 100s more

Microsoft-IEFRAME:

Frame events for tabs,

navigations, history, extensions

USERTIMING IN ETW
performance.mark("startTime1");
performance.mark("endTime1");
performance.mark("startTime2");
performance.mark("endTime2");
performance.measure("durationTime1", "startTime1", "endTime1");
performance.measure("durationTime2", "startTime2", "endTime2");

ETW - STACKS
By using -stackwalk on the
command line, you can
enable stacks on many events

Public symbol servers:

https://msdl.microsoft.com/d
ownload/symbols

http://symbols.mozilla.org/fir
efox

https://chromium-browser-
symsrv.commondatastorage.
googleapis.com/

https://msdl.microsoft.com/download/symbols
http://symbols.mozilla.org/firefox
https://chromium-browser-symsrv.commondatastorage.googleapis.com/

ETW - MORE HELP
More great tutorials on ETW, UIForETW, and xperf are

available at: randomascii.wordpress.com

via Bruce Dawson @BruceDawson0xB

https://randomascii.wordpress.com/
http://twitter.com/BruceDawson0xB

ETW - USES
Slow page load performance? Take a trace!

See page load from a system-wide perspective

Isolate page load from interference due to other
CPU/disk/network activity

Compare browser page load times and resource usage

Examine browser CPU usage hot-spots from sampled
profile stacks

Automated page load regression testing of browsers via
command-line tools

Integrate page load time / cpu usage metrics into your
build system

THE REPRO
1. Using Windows 10 (in a VirtualBox VM?)

2. Open Edge

3. xperf -on latency -stackwalk profile

4. Head to www.customer.com

5. We immediately see the browser go to (Not Responding)

6. xperf -d repro.etl

WPA - CPU SAMPLING
The trace shows Edge spending nearly 100% CPU for over

70 seconds:

CPU SAMPLING STACKS

DIVE DEPEER
With the repro, after a lot of digging around, we found
that the way we were sending large beacons, via a hidden
FORM submission, was triggering this Edge hang

But only if our server was returning either a:

200 OK response, or

204 No Content response that was missing a
Content-Length: 0 header.

VALIDATION
We were able to test different fixes across our test matrix (IE

6 - Edge, Chrome, Firefox, Safari, Mobile Safari, Android,
Lynx, etc) using Fiddler

CONCLUSION
When you really need to look at a problem wholistically,
system-level tracing is the only way to go

ETW (or things like DTrace on Mac/Linux) can give you a
different perspective, and show you CPU, disk, network,
and other system activity occuring during your scenario

LINKS
mPulse:

WebPageTest:

tcpdump:

Wireshark:

CloudShark:

mpulse.soasta.com

webpagetest.org

tcpdump.org

wireshark.org

cloudshark.org

http://mpulse.soasta.com/
http://www.webpagetest.org/
http://tcpdump.org/
https://www.wireshark.org/
http://cloudshark.org/

LINKS
Chrome Trace:

Fiddler:

Windows Performance Analyzer:

VirtualBox:

TamperMonkey:

NodeJS:

UIForETW:

chromium.org/developers/how-tos/trace-
event-profiling-tool

telerik.com/fiddler

go.microsoft.com/fwlink/p/?LinkID=293840

virtualbox.org

tampermonkey.net

nodejs.org

github.com/google/UIforETW

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
http://www.telerik.com/fiddler
https://msdn.microsoft.com/en-us/library/windows/hardware/hh448170.aspx
https://www.virtualbox.org/wiki/Downloads
http://tampermonkey.net/
http://nodejs.org/
https://github.com/google/UIforETW

THANKS!

