
THE HAPPY
PATH

MIGRATION STRATEGIES FOR
NODE.JS

 | Brian Anderson @Brianmatic

 | Nic Jansma @NicJ

 | Jason Sich @JaSich

https://github.com/brianmatic
https://github.com/brianmatic
http://nicj.net/
https://twitter.com/NicJ
http://rdbk.net/
https://twitter.com/JaSich

INTRODUCTION
1. OST Todos and NDriven

2. What is Node.js?

3. What is the most popular stack for building web based
Node.js apps?

4. Why are large companies adopting it?

5. Why do we care? Why should you care?

6. Show me

OST TODOS
We are going to use this app for our migrations demos.

It is a reference sample application that we built and
released open source last year at GLSEC.

WHAT IS NODE.JS?
Node.js is a software platform for scalable server-side and

networking applications. Node.js applications are written in
JavaScript, and can be run within the Node.js runtime on

Windows, Mac OS X and Linux with no changes.

TECHNICAL DETAILS
Node.js runs JavaScript, using Google's runtime (C++).

Node.js is event-driven, asynchronous, single threaded
and non-blocking, which makes it able to scale more
efficiently than thread-per-connection models (eg. ASP).

V8

Node.js = base .Net Framework and runtime

Modules = libraries like .Net namespace assemblies

NPM = package manager like Nuget

http://en.wikipedia.org/wiki/V8_%28JavaScript_engine%29

MOST POPULAR STACK
FOR WEB APPS?

MEAN
1. MongoDB - Document-based database server

2. Express - Web framework for Node.js

3. Angular - JavaScript MVW framework

4. Node.js - Server side JavaScript

ENTERPRISE PROCESS
READY

Grunt, Gulp = build tool (MSBuild)

Jenkins, Strider = continuous integration (TeamCity,
Bamboo or Cruise Control still work)

NodeUnit, Jasmine, Mocha, Vows = unit testing (nUnit)

Bower = front end package manager by Twitter

MAJOR COMPANIES ARE
ADOPTING THESE
TECHNOLOGIES

PAYPAL
" We are moving every product & every site within PayPal to

Node. We started the journey by using it as prototyping
framework... by end of 2014 we hope to have all major

experiences redesigned, and rewritten on Node.

We are seeing big scale gains, performance boosts and big
developer productivity."

Built almost twice as fast with fewer people

33% fewer lines of code

40% less files

Bill Scott - http://www.quora.com/Node-js/What-companies-
are-using-Node-js-in-production

http://www.quora.com/Node-js/What-companies-are-using-Node-js-in-production

DOW JONES
"The simple truth is Node has reinvented the way we create
websites. Developers build critical functionality in days, not

weeks."

Michael Yormark
WSJD Product Operations

More examples here: http://nodejs.org/industry/

http://nodejs.org/industry/

MORE EXAMPLES

Supported by Microsoft (and).

The list is long and keeps growing...

LinkedIn

eBay

Yahoo

Walmart

Visual Studio Azure

http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/#.U2ECG_ldV8E
http://yahooeng.tumblr.com/post/68823943185/nodejs-high-availability
http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/
http://www.microsoft.com/web/webmatrix/node.aspx
http://azure.microsoft.com/en-us/develop/nodejs/

WHY SHOULD YOU CARE?
Less training, less code: One language on the client and
server.

Less abstraction: simplifies layers and removes need for
ORM if you think NoSQL.

Faster prototyping and bootstrapping.

Modern and makes you think in terms of modern web
apps.

A large community with a lot of active development.
These technologies seem to be beloved by developers.

SHOW ME
Take it over Nic and Jason

THE SCENARIO
You are a full-stack developer working at the FooFactory.

The FooFactory has an internal task management system
based off OST (ASP.NET MVC 4, ,).

Your boss, BossFoo, is interested in rapidly prototyping
new features for the task management system as it is
becoming an integral part of the FooFactory's daily
operations.

BossFoo has read about and is interested in
possibly using it to speed up and unify FooFactory's web
development stacks.

Todos AngularJS ndriven

Node.js

https://github.com/OSTUSA/ost-todos
https://angularjs.org/
https://github.com/OSTUSA/ndriven
http://nodejs.org/

OST TODOS DEMO

phase0.foofactory.net

http://phase0.foofactory.net/

BOSSFOO'S
REQUIREMENTS

BossFoo wants you to add the following features to the
Todos application:

A document storage and retrieval system where users
can attach documents to their tasks.

An admin interface that can monitor the system in real-
time to show its load and operational costs.

YOUR CONSTRAINTS
However, you are constrained by the following criteria:

BossFoo is under a time and budget crunch to get these
features implemented and would prefer to see a
prototype of how it will work before he invests in big
hardware to run it full time.

There is no short-term budget for dedicated hardware
or storage until it has been proven to work, so an on-
demand infrastructure-as-a-service (IaaS) should be used.

The prototype has to integrate seamlessly into the
existing Todos application.

THE PATH TO NODE.JS
You carefully consider what you will need to prototype the

new features:

A document storage system that will scale gracefully as
usage increases.

A new API that allows for document listing, creation,
retrieval and deletion.

An update to the Todos AngularJS application that will
integrate with the new API.

DOCUMENT STORAGE
Since you have no hardware budget, you choose to use

, a cloud-based file system that scales seamlessly.Amazon S3

http://aws.amazon.com/s3/

API - THE CONTENDERS
There are at least two stacks you could use to build the API:

C# / ASP.net MVC: Extend the existing MVC app, add data
models, build a new API, update all the layers of the onion,
integrate with S3, update the AngularJS UI.

Node.js: Add a new Node.js API server, have it integrate
with S3, update the AngularJS UI.

AND THE WINNER IS...
NODE.JS

Node.js is great for prototyping since there is no build
process, JavaScript is a dynamic language, server and
client code look the same, etc.

Amazon S3 introduces a high latency link. Node.js is non-
blocking so it can scale better.

Node.js and make it easy to build real-time
applications.

Socket.IO

http://socket.io/

PHASE 1: BUILDING THE
API

Goal: Create a Node.js API server that interacts with Amazon
S3, and update the AngularJS UI to associate documents

with tasks

PHASE 1: STEPS
1. Get ...

2. Bootstrap an project:
> express node-server

3. Add a few simple REST routes for document creating,
listing, retrieval and removal.

4. Integrate with Amazon's :
> npm install aws-sdk

5. Update the AngularJS application to point to the Node.js
API server.

6. Hook your new node server into IIS server using .

up and running with Node

express

SDK for JavaScript

iisnode

http://nodeguide.com/
http://expressjs.com/
http://aws.amazon.com/sdkfornodejs/
https://github.com/tjanczuk/iisnode

PHASE 1: REST API
We want to create the following REST API routes:

1. GET /api/todo/:id/files

Get all of the file names for a todo

2. GET /api/todo/:id/file/:name

Get a specific file

3. DELETE /api/todo/:id/file/:name

Delete a specific file

4. POST /api/todo/:id/files

Upload (overwrite) a file

PHASE 1: CODE
// imports
var http = require('http'), fs = require('fs'),
 express = require('express'), AWS = require('aws-sdk');

// configure AWS
AWS.config.loadFromPath('./aws.json');
var s3 = new AWS.S3();

// startup the HTTP server
app = express();
var httpServer = http.createServer(app);
httpServer.listen(80);

// one of the routes
app.get('/api/todo/:id/files/:name', function(req, res) {
 s3.getObject({
 Bucket: 'glsec-2014',
 Key: 'todos/' + req.params.id + '/' + req.params.name + '.txt'
 }, function(err, data) {
 if (err || !data) { return res.send(500, err); }
 var buff = new Buffer(data.Body, "binary");
 res.send(buff);
 });
});

This is a simplified (but runnable) version of the .code

https://github.com/hello-mean/glsec-2014/tree/master/phase-1/node-server

PHASE 1: DEMO

phase1.foofactory.net

http://phase1.foofactory.net/

PHASE 2: BUILDING THE
ADMIN INTERFACE

Goal: Create an Admin interface so the system can be
monitored in real-time.

PHASE 2: STEPS
1. Create a new AngularJS view for Admins.

2. Add to the node server and AngularJS client.

3. Add Socket.IO events for log events, API hits and periodic
server statistics.

4. Use the JavaScript charting library to display
real-time charts.

Socket.IO

Rickshaw

http://socket.io/
http://code.shutterstock.com/rickshaw/

PHASE 2: CODE
Server

// ... continued from Phase 1 server code ...
var socketIo = require('socket.io');

var sockets = [];

io = socketIo.listen(httpServer);
io.sockets.on('connection', function(socket) {
 sockets.push(socket);

 socket.emit('log', { msg: 'Hello' });
});

Client

<script src="socket.io.js"></script>
<script>
// ... AngularJS client code ...
var socket = io.connect('http://api.foofactory.net');
socket.on('log', function (data) {
 // log message
});
</script>

This is a simplified (but runnable) version of the .code

https://github.com/hello-mean/glsec-2014/tree/master/phase-2/node-server

PHASE 2: DEMO

PHASE 3: SCALING
Goal: Allow the system to be easily scaled by Admins.

PHASE 3: STEPS
1. Add buttons for Admins to increase or decrease the

number of Node.js API server instances (enterprise or
cloud).

2. Add a new controller that will manage internal VMs,
 or Node.js load-balanced instances.

3. Allow Admins to monitor the number of instances.

4. Have all Node.js API server instances communicate with
the master server, sending stats, logs and API hits in real-
time.

Amazon EC2 Azure

For this phase, we created mock instances that pretend to see user activity.

https://aws.amazon.com/ec2/
http://azure.microsoft.com/en-us/

PHASE 3: CODE
Load-Balanced Instances

// workerInstance.js: Server instances also connect
// to master API server via Socket.IO
var socketIoClient = require('socket.io-client');

var io = socketIoClient.connect('http://api.foofactory.net');

client.on('connect', function() {
 client.emit('log', { msg: 'I connected' });
});

Master Server

// ... continued from Phase 2 server code ...

// collect log events from other server instances
socket.on('log', function(data) {
 // repeat log to all Admin clients
 for (var i = 0; i < sockets.length; i++) {
 sockets[i].emit('log', data);
 }
});

This is a simplified version of the .code

https://github.com/hello-mean/glsec-2014/tree/master/phase-3/node-server

PHASE 3: DEMO

phase3.foofactory.net

http://phase3.foofactory.net/

PHASE 4: REWRITING THE
ASP.NET MVC API

Goal: For comparison, migrate all of the existing ASP.net
MVC API to Node.js.

PHASE 4: STEPS
1. Create a new REST API in the Node.js server that mimics

the ASP.NET MVC REST API.

2. Simplify by using a NoSQL solution such as for
todo storage.

MongoDB

http://www.mongodb.com/

PHASE 4: REST API
Leave the client alone. Migrate the following REST APIs to

Node.js:

1. GET /api/todolist/:id/todos: Get todos for a list

2. POST /api/todolist/:id/todos: Post a todo to a list

3. GET /api/todolists: Get all of the todos for the user

4. GET /api/todolist/:id: Get a specific todolist

5. DELETE /api/todolist/:id: Deletes a specific todolist

6. POST /api/todolist: Creates a todolist

PHASE 4: CODE: DATA
MODEL

// todolist.js
var mongoose = require('mongoose');

var todoSchema = mongoose.Schema({
 Title: String,
 Completed: Boolean
});

var todoListSchema = mongoose.Schema({
 Name: String,
 OwnerId: String,
 Todos: [todoSchema]
});

// CommonJS exports
exports.Todo = mongoose.model('Todo', todoSchema);
exports.TodoList = mongoose.model('TodoList', todoListSchema);

This is a simplified version of the .code

https://github.com/hello-mean/glsec-2014/tree/master/phase-4/node-server

PHASE 4: CODE:
CONTROLLER

var TodoList = require('./todolist').TodoList;

app.get('/api/todolists', function(req, res) {
 var userId = req.get('userId');
 // MongoDB / Mongoose ORM
 TodoList.find({ OwnerId: userId }, function(err, lists) {
 if (err) { return res.send(500, err); }

 if (!lists) { return res.send(404); }

 return res.send(lists);
 });
});

PHASE 4: CODE: CLIENT
Before

angular.module("todos.services", ['ngResource']).
 factory("TodoList", ['$resource', function ($resource) {
 return $resource('/api/todolists/:id', { id: '@Id' });
 }]).
}]).

After

angular.module("todos.services", ['ngResource']).
 factory("TodoList", ['$resource', function ($resource) {
 return $resource('http://api.foofactory.net/api/todolists/:id', { id: '@Id' });
 }]).
}]).

PHASE 4: DEMO

This should look the same as Phase 2, now powered by Node.js!

phase4.foofactory.net

http://phase4.foofactory.net/

MIGRATION STRATEGIES
Start small: Consider implementing a small new feature
in Node.js before you decide what parts of your
architecture make sense to use Node.js.

Learn to love prototyping: Node is great for quickly
experimenting on new features. Prototype first before
engineering a fully-baked solution.

Hook Node.js into IIS: Consider using to easily
hook Node.js into your IIS server instead of adding a
separate Node.js server.

Use it alongside your existing apps: Give it a try

iisnode

https://github.com/tjanczuk/iisnode

CLOSING
Links:

Code:

Presentation:

Demo: , ,
,

 |

 |

 |

github.com/hello-mean/glsec-2014

github.com/hello-mean/glsec-
2014/presentation

phase1.foofactory.net phase1.foofactory.net
phase1.foofactory.net phase1.foofactory.net

Brian Anderson @Brianmatic

Nic Jansma @NicJ

Jason Sich @JaSich

https://github.com/hello-mean/glsec-2014
https://github.com/hello-mean/glsec-2014/tree/master/presentation
http://phase1.foofactory.net/
http://phase1.foofactory.net/
http://phase1.foofactory.net/
http://phase1.foofactory.net/
https://github.com/brianmatic
https://github.com/brianmatic
http://nicj.net/
https://twitter.com/NicJ
http://rdbk.net/
https://twitter.com/JaSich

