
MEASURING THE
PERFORMANCE

OF SINGLE PAGE
APPLICATIONS

 | | | nic jansma SOASTA nicj.net @nicj

 | | | philip tellis SOASTA bluesmoon.info @bluesmoon

http://nicj.net/
http://soasta.com/
http://nicj.net/
http://twitter.com/nicj
http://bluesmoon.info/
http://soasta.com/
http://bluesmoon.info/
http://twitter.com/bluesmoon

SLIDES
slideshare.net/nicjansma/

https://www.slideshare.net/nicjansma/measuring-the-performance-of-single-page-applications

WHO ARE WE?

Nic Jansma

SOASTA

Philip Tellis

SOASTA

DEFINITIONS

RUM
Real User Monitoring

Gathering performance metrics from real user
experiences

Versus Synthetic Monitoring, with emulated users in a
controlled environment

RUM: HOW IT'S DONE
JavaScript measures the browser's events and
performance interfaces

Listen for readyState changes and the onload event

Measure DNS, TCP, SSL, Request and Response times
from NavigationTiming and user measurements from
UserTiming (if available)

Gather User Agent characteristics (Version, Screen Size,
etc)

Beacon this data back to the cloud for analytics

NAVIGATIONTIMING

NAVIGATIONTIMING

RESOURCETIMING

RESOURCETIMING

RESOURCETIMING

BOOMERANG
Created by Philip Tellis @ Yahoo

Gathers performance metrics and characteristics of page
load and beacons data to your server (aka RUM)

Open-source project (with contributions from SOASTA)

https://github.com/lognormal/boomerang/

https://github.com/lognormal/boomerang/

SPAS
SINGLE PAGE APPS

Run on a single page, dynamically bringing in content as
necessary

Built with frameworks like AngularJS, Ember.js,
Backbone.js, React, etc.

SPAS
HARD VS. SOFT NAVIGATIONS

Hard Navigation: The first page load, which will include
all static HTML, JavaScript, CSS, the SPA framework itself
(e.g. angular.js), plus showing the initial route

Soft Navigation: Any subsequent route (address bar)
change

Any URL might be loaded via either hard or soft navigation

3 CHALLENGES
OF MEASURING THE

PERFORMANCE OF SPAS

CHALLENGE #1
THE ONLOAD EVENT NO LONGER

MATTERS
Traditional websites:

On navigation, the browser begins downloading all of the
JavaScript, CSS, images and other static resources

Once all static resources are fetched, the body's onload
event will fire

This is traditionally what websites consider as page load
complete

This is traditionally what RUM measures

TRADITIONAL WEBSITE
WATERFALL

CHALLENGE #1
THE ONLOAD EVENT NO LONGER

MATTERS
Single Page Apps:

Load all static content like a traditional website

The frameworks' code will also be fetched (e.g.
angular.js)

(the onload event fires here)

Once the SPA framework is loaded, it starts looking at
routes, fetching views and data

All of this content is fetched after the onload event

SPA WATERFALL

SPA WATERFALL
Browser fires onload at 1.225

seconds

All visual resources (.jpgs) aren't

complete until after 1.7 seconds

Filmstrip confirms nothing is

shown until around 1.7 seconds

onload fired 0.5 seconds too

early!

CHALLENGE #1
THE ONLOAD EVENT NO LONGER

MATTERS
Single Page Apps:

Core problem is that most of the interesting stuff (e.g.
fetching images, JavaScript, CSS and XHRs for the route)
happens after the onload

The browser doesn't fire any "fully loaded"-style events
after onload

CHALLENGE #2
SOFT NAVIGATIONS ARE NOT REAL

NAVIGATIONS
Each route change, user interaction, or visual update is
dynamically fetched from the server

There are APIs to change the URL (and detect changes) in
the address bar without actually navigating

New content is dynamically swapped in over the old
content

The browser is no longer doing a traditional navigation,
where it's tearing down the old page

CHALLENGE #2
SOFT NAVIGATIONS ARE NOT REAL

NAVIGATIONS
This is great for performance

The browser is no longer re-rendering the same header,
footer or common components

The browser is no longer re-parsing the same HTML,
JavaScript and CSS

CHALLENGE #2
SOFT NAVIGATIONS ARE NOT REAL

NAVIGATIONS
Bad for traditional RUM tools:

Stop caring after the measuring the "one" navigation

Won't run again until the next time it loads on a full
navigation

Browser events (readyState, onload) and metrics
(NavigationTiming) are all geared toward a single load
event

CHALLENGE #3
THE BROWSER WON’T TELL YOU

WHEN ALL RESOURCES HAVE BEEN
DOWNLOADED

The browser fires onload only once

The onload event helps us know when all static content
was fetched

In a soft navigation scenario, the browser does not fire the
onload event again, so we don't know when its content
was fetched

CHALLENGE #3
THE BROWSER WON’T TELL YOU

WHEN ALL RESOURCES HAVE BEEN
DOWNLOADED

SPA soft navigations may fetch:

Templates

Images

CSS

JavaScript

XHRs

Videos

CHALLENGE #3
THE BROWSER WON’T TELL YOU

WHEN ALL RESOURCES HAVE BEEN
DOWNLOADED

SPA frameworks often fire events around navigations.
AngularJS events:

$routeChangeStart: When a new route is being
navigated to

$viewContentLoaded: Emitted every time the ngView
content is reloaded

But neither of these events have any knowledge of the work
they trigger, fetching new IMGs, CSS, JavaScript, etc!

ANGULAR TIMELINE

ANGULARJS EVENT WATERFALL

HOW CAN WE MEASURE
SPA NAVIGATIONS?

We need to figure out at what point the navigation started
(the start event), through when we consider the navigation

complete (the end event).

THE START EVENT
For hard navigations:

The start event is when the browser starts the process of
loading the next page

This is the same time as with traditional web app
navigations

We can use NavigationTiming's navigationStart if
available, to know when the browser navigation began

If NavigationTiming isn't available, and the user is
navigating between pages on the same site, you can use
cookies to measure when the navigation began (see
Boomerang for an implementation)

THE START EVENT
Challenge #2: Soft navigations are not real navigations

We need to figure out when the user's view is going to
significantly change

The browser history is changing

SPA framework routing events can give us an indicator
that the view will be changing

Other important events that might indicate a view change
are a user click, or an XHR that triggers DOM changes

THE START EVENT:
HISTORY STATE

The window.history object can tell us when the URL is
changing:

When pushState or replaceState are being called, the
app is possibly updating its view

When the user hits Back or Forward, the
window.popstate event is fired, and the app will
possibly update the view

(future events will give us more info)

THE START EVENT:
ROUTING

SPA frameworks fire routing events when the view is
changing:

AngularJS: $rootScope.$on("$routeChangeStart")

Ember.js: beforeModel or willTransition

Backbone.js: router.on("route")

THE START EVENT: CLICKS
When the user has clicks something, they might be doing
simple interactions (e.g. a drop-down menu)

Or, they might be triggering a UI update

(future events will give us more info)

THE START EVENT: XHRS
An XMLHttpRequest (network activity) might indicate
that the page's view is being updated

Or, it could be a periodic poller (e.g. a scoreboard update)

Or, it could be in reaction to a user interaction (e.g.
autocomplete)

(future events will give us more info)

THE START EVENT
To determine if a user click or XHR is really triggering a
navigation, we can listen to what happens next

If there was a lot of subsequent network activity, we can
keep on listening for more events

If history (address bar) changed, we can consider the
event the start of a navigation

If the DOM was updated significantly, we can consider the
event the start of a navigation

If nothing else happened, it was probably just an
insignificant interaction

SPA NAVIGATIONS

THE END EVENT
When do we consider the SPA navigation complete?

There are many definitions of complete:

When all networking activity has completed

When the UI is visually complete (above-the-fold)

When the user can interact with the page

THE END EVENT
Traditional RUM measures up to the onload event:

This is when all resources have been fetched

The page isn't fully loaded until at least then

The UI might have been above-the-fold visually complete
already

It's traditionally when the user can fully interact with the
page

SINGLE POINTS OF
FAILURE (SPOFS)

Which resources could affect visual completion of the page?

External JavaScript files

External CSS files

Media (images, video)

THE END EVENT
For hard navigations, the onload event no longer matters

(Challenge #1)

The onload event only measures up to when all static
resources were fetched

The SPA framework will be dynamically loading its UI only
after the static JavaScript has been loaded

We want to mark the end of the hard navigation only after
all of the resources were fetched and the UI is complete

THE END EVENT
For soft navigations, the browser won’t tell you when all

resources have been downloaded (Challenge #3)

The onload only fires once on a page

APIs like ResourceTiming can give you details about
network resources after they've been fetched

But to know when to stop, we need to know if there are
any outstanding resources

So let's monitor all network activity!

THE END EVENT
Let's make our own SPA onload event:

Similar to the body onload event, let's wait for all network
activity to complete

This means we will have to intercept both implicit
resource fetches (e.g. from new DOM elements) as well as
programmatic (e.g. XHR) resource fetches

MONITORING XHRS
XMLHttpRequests play an important role in SPA

frameworks

XHRs are used to fetch HTML, templates, JSON, XML, data
and other assets

We should monitor to see if any XHRs are occuring

The XMLHttpRequest object can be proxied

Intercept the .open() and .send() methods to know
when an XHR is starting

MONITORING XHRS
Simplified code ahead!

Full code at
github.com/lognormal/boomerang/blob/master/plugins/auto_xhr.js

https://github.com/lognormal/boomerang/blob/master/plugins/auto_xhr.js

MONITORING XHRS
var orig_XHR = window.XMLHttpRequest;
window.XMLHttpRequest = function() {
 var req = new orig_XHR();
 orig_open = req.open;
 orig_send = req.send;

 req.open = function(method, url, async) {
 // save URL details, listen for state changes
 req.addEventListener("load", function() { ... });
 req.addEventListener("timeout", function() { ... });
 req.addEventListener("error", function() { ... });
 req.addEventListener("abort", function() { ... });
 orig_open.apply(req, arguments);
 };

 req.send = function() {
 // save start time
 orig_send.apply(req, arguments);
 }
}

MONITORING XHRS
By proxying the XHR code, you can:

Know which URLs are being fetched

Know when a XHR has started

Know when a XHR has completed, timed out, error or
aborted

Measure XHR states even on browsers that don't support
ResourceTiming

Most importantly, know if there are any outstanding
XHRs

MONITORING XHRS
Downsides:

Need additional code to support XDomainRequest

Timing not as accurate when browser is busy (rendering,
etc) as callbacks will be delayed

You can fix-up timing via ResourceTiming (if available)

OTHER RESOURCES
XHR is the main way to fetch resources via JavaScript

What about Images, JavaScript, CSS and other HTML
elements that trigger resource fetches?

We can't proxy the Image object as that only works if you
create a new Image() in JavaScript

If only we could listen for DOM changes...

MUTATION OBSERVER
:

http://developer.mozilla.org/en-
US/docs/Web/API/MutationObserver

MutationObserver provides developers a way to react to
changes in a DOM

Usage:

observe() for specific events

Get a callback when mutations for those events occur

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

MUTATIONOBSERVER
Simplified code ahead!

Full code at
github.com/lognormal/boomerang/blob/master/plugins/auto_xhr.js

https://github.com/lognormal/boomerang/blob/master/plugins/auto_xhr.js

var observer = new MutationObserver(observeCallback);
observer.observe(document, {
 childList: true,
 attributes: true,
 subtree: true,
 attributeFilter: ["src", "href"]
});

function observeCallback(mutations) {
 var interesting = false;
 if (mutations && mutations.length) {
 mutations.forEach(function(mutation) {
 if (mutation.type === "attributes") {
 interesting |= isInteresting(mutation.target);
 } else if (mutation.type === "childList") {
 for (var i = 0; i < mutation.addedNodes.length; i++) {
 interesting |= isInteresting(mutation.addedNodes[i]);
 }
 }
 });
 }
 if (!interesting) {
 // complete the event after N milliseconds if nothing else happens
 }
});

MUTATIONOBSERVER
Simplified workflow:

Start listening when an XHR, click, route change or other interesting navigation-like

event starts

Use MutationObserver to listen for DOM mutations

Attach load and error event handlers and set timeouts on any IMG, SCRIPT, LINK

or FRAME

If an interesting element starts fetching keep the navigation "open" until it completes

After the last element's resource has been fetched, wait a few milliseconds to see if it

kicked off anything else

If not, the navigation completed when the last element's resource was fetched

MUTATIONOBSERVER
What's interesting to observe?

Internal and cached resources may not fetch anything, so
you have to inspect elements first

IMG elements that haven't already been fetched
(naturalWidth==0), have external URLs (e.g. not data-
uri:) and that we haven't seen before.

SCRIPT elements that have a src set

IFRAMEs elements that don't have javascript: or
about: protocols

LINK elements that have a href set

MUTATIONOBSERVER
Downsides:

Not 100% supported in today's market

Can't be used to monitor all resources (e.g. fonts from
CSS)

MUTATIONOBSERVER
Polyfills (with performance implications):

github.com/webcomponents/webcomponentsjs

github.com/megawac/MutationObserver.js

https://github.com/webcomponents/webcomponentsjs
https://github.com/megawac/MutationObserver.js/tree/master

WHY NOT
RESOURCETIMING?

Doesn't ResourceTiming have all of the data we need?

ResourceTiming events are only added to the buffer after
they complete

In order to extend the SPA navigation end time, we have
to know if any resource fetches are outstanding

MUTATIONOBSERVER
Polyfill ResourceTiming via MutationObserver

For extra credit, you could use the data you gathered with
Mutation Observer to create a Waterfall for browsers that

don't support ResourceTiming but do support
MutationObserver (e.g. iOS).

MUTATIONOBSERVER
Polyfill ResourceTiming via MutationObserver

FRONT-END VS. BACK-
END

In a traditional page load:

FRONT-END VS. BACK-
END

Traditional websites:

Back-End: HTML fetch start to HTML response start

Front-End: Total Time - Back-End

FRONT-END VS. BACK-
END

Single Page Apps:

Depends on your application's patterns, but...

Back-End: Any timeslice with an XHR outstanding

Front-End: Total Time - Back-End

MONITORING PAGE
COMPONENTS

It's not just about navigations

What about components, widgets and ads?

You can apply the previous techniques to page components

For measuring performance, you need a start time and an end time

The start time is probably driven by your code (e.g. a XHR fetch) or a user

interaction (e.g. a click)

The end time can be measured via XHR interception, MutationObservers,

or callbacks from your resource fetches

MONITORING PAGE
COMPONENTS

How do you measure visual completion?

Challenges:

When an IMG has been fetched, that's not when it's
displayed to the visitor (it has to decode, etc.)

When you put HTML into the DOM, it's not immediately on
the screen

MONITORING PAGE
COMPONENTS

Use setTimeout(..., 0) or setImmediate to get a
callback after the browser has finished parsing some DOM

updates

var xhr = new XMLHttpRequest();
xhr.open("GET", "/fetchstuff");
xhr.addEventListener("load", function() {
 $(document.body).html(xhr.responseText);
 setTimeout(function() {
 var endTime = Date.now();
 var duration = endTime - startTime;
 }, 0);
});
var startTime = Date.now();
xhr.send();

MONITORING PAGE
COMPONENTS

This isn't perfect:

The browser may be doing layout, rendering or drawing
async or on another thread

But it's better than ignoring all the work the browser has
to do to render DOM changes

LIFECYCLE
What happens over time?

How well does your app behave?

LIFECYCLE
It's not just about measuring interactions or how long

components take to load

Tracking metrics over time can highlight performance,
reliability and resource issues

LIFECYCLE
You could measure:

Memory usage: window.performance.memory
(Chrome)

DOM Length:
document.documentElement.innerHTML.length

DOM Nodes:
document.getElementsByTagName("*").length

JavaScript errors: window.onerror

Bytes fetched: ResourceTiming2 or XHRs

Frame rate: requestAnimationFrame

THE FUTURE!
OK, that sounded like a lot of work-arounds to measure

Single Page Apps.

Yep.

Why can't the browser just tell give us performance data for
SPAs in a better, more performant way?

LISTENING FOR
RESOURCE FETCHES

Instead of instrumenting XMLHttpRequest and using
MutationObserver to find new elements that will fetch:

W3C Fetch standard

A Fetch Observer
() that notifies
us when a resource fetch starts/stops

Less overhead than MutationObserver

Tracks all resources rather than just DOM elements from
MutationObserver

https://fetch.spec.whatwg.org/

https://github.com/whatwg/fetch/issues/65

https://fetch.spec.whatwg.org/
https://github.com/whatwg/fetch/issues/65

THANKS!
 - - slideshare.net/nicjansma/ @nicj @bluesmoon

soasta.io/SPAperfbook

https://www.slideshare.net/nicjansma/measuring-the-performance-of-single-page-applications
http://twitter.com/nicj
http://twitter.com/bluesmoon
http://soasta.io/SPAperfbook

