
Performance Comparison of Elliptic Curve and RSA
Digital Signatures

Nicholas Jansma [njansma@engin.umich.edu]

Brandon Arrendondo [barrendo@engin.umich.edu]

April 28, 2004

Abstract. This paper compares the performance characteristics of
two public key cryptosystems (RSA and ECC) used in digital
signatures to determine the applicability of each in modern
technological devices and protocols that use such signatures. Digital
signatures are used in message transmission to verify the identity of
the sender and to ensure that a message has not been modified after
signing. The space and time efficiency of digital signature algorithms
is essential to their widespread adoption in message transport systems.

1 Introduction

This paper compares the performance characteristics of RSA and elliptic curve
digital signature algorithms by implementing each algorithm and comparing
their experimental running-times in an effort to gauge the experimental time
efficiencies of each.

Digital signatures are used in message transmission to verify the identity of the
sender of the message and to ensure that the message has not been modified
after signing. They are essential for verifying the authenticity of a message.
The application of digital signatures is widespread in digital computing, taking
the place of an ordinary hand-written signature. Because digital signatures are
akin to hand-written signatures, they are used in many of the applications of
signatures on the Internet (e.g. e-voting, online banking, online college
applications, etc).

The importance of digital signatures in digital communications merits the
research into relatively new cryptosystems such as elliptic curve cryptography
(ECC), especially as the need for more efficient algorithms grows with the
growing number of memory-limited mobile electronic devices. The increasing
key sizes needed by RSA for security against brute force attacks by powerful
computers or distributed computing also makes ECC more appealing, with its
smaller secure key sizes [4].

After implementing and running ECC and RSA digital signatures with various
key sizes on several test cases, we concluded that the results are mostly
consistent with current academic knowledge comparing the two systems. RSA
key generation is quite costly in terms of time, both cryptographic schemes are

Performance Comparison of Elliptic Curves and RSA Signatures: Page 2

comparative (up to 7680 bit RSA signing) for message signing, and RSA
scales better than ECC in signature verification.

2 Preliminary Background

Public key cryptography is used in digital signatures to verify the identity of
the sender of a message and the contents of the message. This must be done in
such a way that the private key of the sender remains secret and an unknown
adversary is not able to potentially forge the signature. Given a public key
cryptosystem in which it is reasonably hard to obtain a user’s private key, and
public key exchange can take place with a high level of confidence of user
identity, digital signatures can be created and used in the following manner:

Alice wants to send a message to Bob and Bob wants to ensure Alice is the
actual sender of the message and that the message’s contents have not been
modified in transit.

1. Alice can generate a private key and public key and send her public
key to Bob.

2. Alice then creates a hash of the message she wishes to send to Bob.
She then encrypts this hash using her private key. She appends this
signature to the message she sends to Bob.

3. Bob can then verify that Alice sent the message by decrypting the
signature using Alice’s public key. The result of the decryption
will be the hash of the message Alice originally sent. Bob can then
hash the message in the same way Alice did and compare the two
hashes.

Using this method, Bob can prove whether Alice sent the message or not
because only Alice’s private key could encrypt the signature. He can also
prove that the message is the original unmodified message Alice sent, for as
long as hashing is relatively unique, any changes in the message would change
the message hash (also called the message digest).

The underlying public key system used to generate digital signatures can make
a considerable difference in the performance of the digital signature process.
The two public key cryptosystems we compare in this paper are RSA and
ECDSA.

3 Rivest Shamir Adelman (RSA)

RSA is one of the oldest and most widely used [14] public key cryptography
algorithms. The algorithm was invented in 1977 by Ron Rivest, Adi Shamir,
and Leonard Adleman.

Page 2

Performance Comparison of Elliptic Curves and RSA Signatures: Page 3

The RSA cryptosystem is based on the assumption that factoring is a
computationally hard task. This means that given sufficient computational
resources and time, an adversary should not be able to “break” RSA (obtain a
private key) by factoring. This does not mean that factoring is the only way to
“break” RSA (in fact, breaking RSA may be easier than factoring, see [5]), but
currently no other methods have been proposed to efficiently break RSA.

3.1 RSA Key Generation

A RSA public and private key pair can be generated using the algorithm
below [15] :

1. Choose two random prime numbers p and q such that the bit length of p
is approximately equal to the bit length of q.

2. Compute n such that n = p * q.
3. Compute φ(n) such that φ(n) = (p – 1)*(q – 1).
4. Choose a random integer e such that e < φ(n) and gcd(e, φ(n)) = 1, then

compute the integer d such that: e*d ≡ 1 mod φ(n).
5. (n, e) is the public key, and d is the private key.

3.2 RSA Signature Generation

Signature of a message m is a straightforward modular exponentiation using
the hash of the message and the private key. The signature s can be obtained
by:

s = hash(m)d (mod n)

A common hash algorithm used is SHA-1 (as described in FIPS 180-2 [9]).

3.3 RSA Signature Verification

To verify a signature s for message m, the signature must first be decrypted
using the author’s public key (n, e). The hash h is thus obtained by

h = se (mod n)

If h matches hash(m), then the signature is valid – the message was signed by
the author, and the message has not been modified since signing.

4 Elliptic Curve Cryptography (ECC)

An elliptic curve is given by an equation in the form of:

 y2 = x3 + ax + b

Page 3

Performance Comparison of Elliptic Curves and RSA Signatures: Page 4

where 4a3 + 27b2 ≠ 0

Many interesting problems arise from the set of points on elliptic curves over a
finite field under group operations. The finite fields that are commonly used
are those over primes (Fp) and binary fields (F2

n). The security of ECC is
based on the elliptic curve discrete logarithm problem (ECDLP). This problem
is defined as:

 Given points X, Y on the elliptic curve, find z such that:

 X = zY

The discrete logarithm problem over this group in a finite field is a good one-
way function because there are currently no known polynomial time attacks for
solving the problem [13]. The methods for computing the solutions to the
ECDPL are much less efficient than that of factoring, so ECC can provide the
same security as RSA with smaller key lengths.

ECC was developed independently by Neal Koblitz and Victor Miller in 1985.

4.1 ECC Key Generation

To generate a public and private key pair for use in ECC communications, an
entity would perform the following steps:

1. Find an elliptic curve E(K), where K is a finite field such as Fp or F2
n,

and a find point Q on E(K). n is the order of Q. Recommended domain
parameters for E(K) are suggested in [11].

2. Select a pseudo random number x such that 1 ≤ x ≤ (n - 1).
3. Compute point P = xQ.
4. Your ECC key pair is (P, x), where P is your public key, and x is your

private key.

4.2 ECC Digital Signatures (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in FIPS
186-2 [10] as a standard for government digital signatures, and described in
ANSI X9.62. ECDSA was first proposed by Scott Vanstone [6] in 1992.

4.2.1 ECDSA Signature Generation

To create a signature S for a message m, using ECC key pair (P, x) over E(K),
an entity performs the following steps [8]:

1. Generate a random number k such that 1 ≤ k ≤ (n - 1).

Page 4

Performance Comparison of Elliptic Curves and RSA Signatures: Page 5

2. Compute point kQ = (x1, y1).
3. Compute r = x1 (mod n). If r = 0, go to step 1.
4. Compute k-1 (mod n).
5. Compute SHA-1(m), and convert this to an integer e.
6. Compute s = k-1(e + xr) (mod n). If s = 0, go to step 1.
7. The signature for message m is S = (r, s).

4.2.2 ECDSA Signature Verification

To verify a signature S = (r, s) for message m over a curve E(K) using the
author’s public key P, an entity performs following [8]:

1. Verify r and s are integers over the interval [1, n - 1].
2. Compute SHA-1(m) and convert this to an integer e.
3. Compute w = s-1 (mod n).
4. Compute u1 = ew (mod n) and u2 = rw (mod n).
5. Compute X = u1Q + u2P
6. If X = Ở, reject S. Otherwise, compute v = x1 (mod n).
7. Accept if and only if v = r.

5 Run-time Comparisons

To test and compare the performance characteristics of the RSA and ECDSA
signature algorithms, we independently tested each of the three main
components: key generation, signature generation and signature verification.

Since ECC offers security equivalent to RSA using much smaller key sizes, the
performances were tested according to the following table, suggested from [4].

Table 5-1: Comparable key sizes (in bits)

Symmetric ECC RSA
80 163 1024
112 233 2240
128 283 3072
192 409 7680
256 571 15360

Tests were performed on an Intel P4 2.0 GHz machine with 512MB of RAM.
The message used for signing is a 100 KB text file.

Page 5

Performance Comparison of Elliptic Curves and RSA Signatures: Page 6

5.1 Key Generation

Table 5-2: Key generation performance

Key Generation Key Length Time (s)
 ECC RSA ECC RSA
 163 1024 0.08 0.16
 233 2240 0.18 7.47
 283 3072 0.27 9.80
 409 7680 0.64 133.90
 571 15360 1.44 679.06

Key generation for ECC outperforms RSA at all key lengths, and is especially
apparent as the key length increases. Since ECC does not have to devote
resources to the computationally intensive generation of prime numbers, ECC
can create the private/public key pair in superior speed to RSA comparable
lengths.

ECC key generation time grows linearly with key size, while RSA grows
exponentially.

5.2 Signature Generation

Table 5-3: Signature generation performance

Signing Key Length Time (s)
 ECC RSA ECC RSA
 163 1024 0.15 0.01
 233 2240 0.34 0.15
 283 3072 0.59 0.21
 409 7680 1.18 1.53
 571 15360 3.07 9.20

The performance of the two algorithms does not differ until the larger key
sizes, where ECC outperforms RSA. One important consideration of the
signature generation process is that some of the time for each algorithm is
spent computing the SHA-1 hash of the message.

5.3 Signature Verification

Table 5-4: Signature verification performance

Verification Key Length Time (s)
 ECC RSA ECC RSA
 163 1024 0.23 0.01
 233 2240 0.51 0.01
 283 3072 0.86 0.01
 409 7680 1.80 0.01
 571 15360 4.53 0.03

Page 6

Performance Comparison of Elliptic Curves and RSA Signatures: Page 7

Signature verification is where RSA pulls ahead of ECC in performance. The
time to verify a message signed in RSA is negligible for the key lengths used,
and does not even show a difference until you go from 7680 to 15360 bits.
ECC lags behind in performance in every key length, showing nearly linear
growth for increasing key sizes.

6 Implementation of RSA Signatures

The implementation of RSA signatures used in the run-time comparisons uses
version 5.1 of the Crypto++TM Library [2]. For convenience and timing, the
RSA signature process was divided into three programs, listed below.

6.1 rsaKeys.cpp (see Appendix A1 for source code)

rsaKeys is responsible for public and private RSA key generation. It generates
the public and private keys, given key size in bits and the file locations to store
these keys.

6.2 rsaSign.cpp (see Appendix A2 for source code)

rsaSign is responsible for signing a message using an RSA private key
provided by the user. It also requires the location of the message file and
location in which to store the signature file.

We chose to implement RSA signatures using PKCS #1 v2.1 Signature
Scheme with appendix version 1.5 (as described in the RSA Cryptography
Standard [12]). The hashing algorithm used to hash the messages in the
signatures is SHA-1 (as described in FIPS 180-2 [9]).

6.3 rsaVerify.cpp (see Appendix A3 for source code)

rsaVerify verifies a signature made using an RSA private key by decrypting it
with the public key. It requires, as input from the user, the location to the
public key file, the location of the signature file, and the location of the
message file that the signature is signing. After decrypting the signature, it
performs a hash of the message and compares it to the hash decrypted to
validate the signature.

7 Implementation of ECC Digital Signatures (ECDSA)

The implementation of ECC digital signatures follows the guidelines as
specified for Elliptic Curve Digital Signatures (ECDSA) in ANSI X9.62. The
ECDSA signature process was split into three programs: key generation,
signature generation and signature verification. The open source borZoi
library [1], version 1.02 was used to implement these programs.

Page 7

Performance Comparison of Elliptic Curves and RSA Signatures: Page 8

7.1 ecdsaKeys.cpp (see Appendix A4 for source code)

ecdsaKeys is responsible for the generation of ECDSA keys for the specific
NIST approved binary fields GF(2n) of 163, 233, 283, 409 and 571. It
generates a public and private key pair that is saved to disk in ASN.1 DER
(Distinguished Encoding Rules) syntax according to ANSI X9.62 standards
[7].

7.2 ecdsaSign.cpp (see Appendix A5 for source code)

ecdsaSign reads in a message stored on disk, and generates a signature file
according to ANSI X9.62 standards based on the user’s ECDSA private key
file from ecdsaKeys. The signature file is stored on disk in ASN.1 DER
encoding.

The hashing function used is SHA-1 (as described in FIPS 180-2 [9]).

7.3 ecdsaVerify.cpp (see Appendix A6 for source code)

ecdsaVerify performs the verification process to determine whether the
message and its signature match the public key for the author of the message.
It ensures that, if verification is successful, the author of the message was the
signer of the message, and the message has not been modified during
transmission.

8 Conclusions

Our findings suggest that RSA key generation is significantly slower than ECC
key generation for RSA key of sizes 1024 bits and greater. Considering there
are affordable devices than can break RSA keys smaller than 1024 bits in a
matter of days [3], the cost of key generation can be considered as a factor in
the choice of public key systems to use when using digital signatures,
especially for smaller devices with less computational resources than our test
machine.

Devices that do not need to generate RSA keys for each use, but rather have
fixed RSA keys, will not have such a setback due to memory and time
constraints compared to ECC, as our results show. RSA is comparable to ECC
for digital signature creation in terms of time, and is faster than ECC for digital
signature verification. Thus, for applications requiring message verification
more often than signature generation, RSA may be the better choice.

ECC is still in its infancy, and thus has not received as much scientific analysis
as the much older RSA scheme. The smaller key sizes of ECC potentially

Page 8

Performance Comparison of Elliptic Curves and RSA Signatures: Page 9

allow for less computationally able devices such as smart cards and embedded
systems to use cryptography for secure data transmissions, message
verification and other means.

Page 9

Performance Comparison of Elliptic Curves and RSA Signatures: Page 10

9 References

9.1 Software Libraries

[1] borzoi 1.02 – an open source Elliptic Curve Cryptography Library by
 Dragongate Technologies Ltd.

Available (28 April 2004) at:
 http://www.dragongate-technologies.com/

[2] Crypto++TM Library 5.1 – a Free C++ Class Library of Cryptographic

Schemes. Written by Wei Dai.
Available (28 April 2004) at:
http://www.eskimo.com/~weidai/cryptlib.html

9.2 Research Papers and Journals

[3] A. Shamir, and E. Tromer, Factoring Large Numbers with the TWIRL

Device.
Available (28 April 2004) at:
http://psifertex.com/download/twirl.pdf

[4] A. Lenstra, and E. Verheul, "Selecting Cryptographic Key Sizes",

Journal of Cryptology 14 (2001) 255-293.

[5] D. Boneh, and R. Venkatesan. Breaking RSA May be Easier Than

Factoring. Available (28 April 2004) at:
http://theory.stanford.edu/~dabo/papers/no_rsa_red.pdf

[6] S. Vanstone, “Responses to NIST’s Proposal”, Communications of the

ACM, 35, July 1992, 50-52

9.3 Standards

[7] Abstract Syntax Notation One Standard.
 Available (28 April 2004) at:
 http://asn1.elibel.tm.fr/en/

[8] Elliptic Curve Digital Signature Algorithm (ECDSA).
 Available (28 April 2004) at:

http://www.comms.scitech.susx.ac.uk/fft/crypto/ecdsa.pdf

[9] FIPS 180-2: The Secure Hash Standard.

Available (28 April 2004) at:
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2

Page 10

Performance Comparison of Elliptic Curves and RSA Signatures: Page 11

[10] FIPS 186-2: The Digital Signature Standard.
Available (28 April 2004) at:
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

[11] SEC 2: Recommended Elliptic Curve Domain Parameters.

Available (28 April 2004) at:
http://www.secg.org/collateral/sec2_final.pdf

[12] PKCS#1 v2.1: RSA Cryptography Standard, RSA Laboratories,

June 14, 2002

9.4 Books and Presentations

[13] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography.

Cambridge University Press, 1999.

[14] P. Riikonen. RSA Algorithm.

Available (28 April 2004) at:
http://iki.fi/priikone/docs/rsa.pdf

[15] W. Mao. Modern Cryptography: Theory and Practice. © 2004. pp. 258

Page 11

/***
 EECS 498: Introduction to Cryptography
 Brandon Arrendondo [barendo@umich.edu]
 Nic Jansma [njansma@umich.edu]

 rsaKeys.cpp

 Generate a pair of RSA keys.
***/
#include <string>
#include <iostream>
#include <time.h>
#include "base64.h"
#include "default.h"
#include "files.h"
#include "hex.h"
#include "randpool.h"
#include "rng.h"
#include "osrng.h"
#include "rsa.h"
using namespace CryptoPP;

int main(int argc, char *argv[])
{
 std::string privFilename, pubFilename;
 unsigned int keyLength;

 if (argc != 3) {
 std::cout << "RSA Key Generation\n";
 std::cout << "Usage: rsa_genkeys keylen keyfile\n\n";
 std::cout << " keyfile will have .pri and .pub appeneded to it\n";
 exit(1);
 }

 keyLength = atoi(argv[1]);
 privFilename = argv[2];
 privFilename.append(".pri");
 pubFilename = argv[2];
 pubFilename.append(".pub");

 AutoSeededRandomPool rng;

 RSAES_OAEP_SHA_Decryptor priv(rng, keyLength);
 HexEncoder privFile(new FileSink(privFilename.c_str()));
 priv.DEREncode(privFile);
 privFile.MessageEnd();

 RSAES_OAEP_SHA_Encryptor pub(priv);
 HexEncoder pubFile(new FileSink(pubFilename.c_str()));
 pub.DEREncode(pubFile);
 pubFile.MessageEnd();
}

Nic Jansma
Text Box
Appendix A1

/***
 EECS 498: Introduction to Cryptography
 Brandon Arrendondo [barendo@umich.edu]
 Nic Jansma [njansma@umich.edu]

 rsaSign.cpp

 Sign a message using an RSA private key.
***/
#include <iostream>
#include <time.h>
#include "base64.h"
#include "default.h"
#include "files.h"
#include "hex.h"
#include "randpool.h"
#include "rng.h"
#include "osrng.h"
#include "rsa.h"
using namespace CryptoPP;

int main(int argc, char *argv[])
{
 std::string priFilename, msgFilename, sigFilename;

 if (argc != 4) {
 std::cout << "RSA Verification\n";
 std::cout << "Usage: rsa_sign prifile message sig\n\n";
 exit(1);
 }

 priFilename = argv[1];
 msgFilename = argv[2];
 sigFilename = argv[3];

 AutoSeededRandomPool rng;

 FileSource privFile(priFilename.c_str(), true, new HexDecoder);
 RSASSA_PKCS1v15_SHA_Signer priv(privFile);
 FileSource f(msgFilename.c_str(), true, new SignerFilter(rng, priv,
 new HexEncoder(new FileSink(sigFilename.c_str()))));

 return 0;
}

Nic Jansma
Text Box
Appendix A2

/***
 EECS 498: Introduction to Cryptography
 Brandon Arrendondo [barendo@umich.edu]
 Nic Jansma [njansma@umich.edu]

 rsaVerify.cpp

 Verify a RSA signed message
***/
#include <string>
#include <iostream>
#include <time.h>
#include "base64.h"
#include "default.h"
#include "files.h"
#include "hex.h"
#include "randpool.h"
#include "rng.h"
#include "osrng.h"
#include "rsa.h"
using namespace CryptoPP;

int main(int argc, char *argv[])
{
 std::string pubFilename, msgFilename, sigFilename;

 if (argc != 4) {
 std::cout << "RSA Verification\n";
 std::cout << "Usage: rsa_verify pubfile message sig\n\n";
 exit(1);
 }

 pubFilename = argv[1];
 msgFilename = argv[2];
 sigFilename = argv[3];

 FileSource pubFile(pubFilename.c_str(), true, new HexDecoder);
 RSASSA_PKCS1v15_SHA_Verifier pub(pubFile);

 FileSource signatureFile(sigFilename.c_str(), true, new HexDecoder);
 if (signatureFile.MaxRetrievable() != pub.SignatureLength()) {
 std::cout << "Incorrect public key\n";
 }
 SecByteBlock signature(pub.SignatureLength());
 signatureFile.Get(signature, signature.size());

 VerifierFilter *verifierFilter = new VerifierFilter(pub);
 verifierFilter->Put(signature, pub.SignatureLength());
 FileSource f(msgFilename.c_str(), true, verifierFilter);

 if(verifierFilter->GetLastResult())
 {
 std::cout << "Valid signature" << std::endl;
 }
 else
 {
 std::cout << "Invalid signature" << std::endl;
 }

return 0;
}

Nic Jansma
Text Box
Appendix A3

/***
 EECS 498: Introduction to Cryptography
 Brandon Arrendondo [barendo@umich.edu]
 Nic Jansma [njansma@umich.edu]

 ecdsaKeys.cpp

 Generate ECC private and public key pair
***/
#include "borzoi.h"
#include "nist_curves.h"
#include <fstream>
#include <string>

using namespace std;

void gen_keys(string pass, string oFile, int keylen);

int main (int argc, char* argv[]) {
 // send to key generation function

 if (argc != 4) {
 cout << "ECDSA Key Generation" << endl;
 cout << "Usage: ecdsa_genkeys \"password\" output_file keylen" << endl << endl;
 cout << " Files output_file.pub and output_file.priv will be created" << endl;
 cout << " keylen: can be 163, 233, 283, 409, 571 " << endl;
 exit(1);
 }

 // generate keys to a file
 gen_keys(argv[1], argv[2], atoi(argv[3]));
 return 0;
}

void gen_keys(string pass, string oFile, int keylen) {
 ECPrivKey *keyPriv;
 string sFilePri = oFile;

 ECPubKey *keyPub;
 string sFilePub = oFile;

 EC_Domain_Parameters dp;

 // generate file names
 sFilePri.append(".pri");
 sFilePub.append(".pub");

 // determine keysize
 switch (keylen) {
 case 163:
 use_NIST_B_163();
 dp = NIST_B_163;
 break;

 case 233:
 use_NIST_B_233();
 dp = NIST_B_233;
 break;

 case 283:
 use_NIST_B_283();
 dp = NIST_B_283;
 break;

 case 409:
 use_NIST_B_409();
 dp = NIST_B_409;
 break;

Nic Jansma
Text Box
Appendix A4

 case 571:
 use_NIST_B_571();
 dp = NIST_B_571;
 break;
 }

 cout << "Using keysize: " << keylen << " bits." << endl;

 // create private key
 cout << "Generating private key, please be patient... " << endl;
 keyPriv = new ECPrivKey(dp);
 cout << "done!" << endl;

 // encrypt this to DER and Hex (for file output and screen output)
 DER keyPrivDER(*keyPriv);
 HexEncoder oHex(keyPrivDER);

 // show the hex encoding on screen
 cout << oHex << endl << endl;

 // generate public key
 cout << "Generating public key... ";
 keyPub = new ECPubKey(*keyPriv);
 cout << "done:" << endl;

 // convert to DER and HEX
 DER keyPubDER(*keyPub);
 oHex = HexEncoder(keyPubDER);

 // print out public key to screen
 cout << oHex << endl << endl;

 // output DER for private key to file
 cout << "Creating file " << oFile << ".pri ...";
 ofstream outfile (sFilePri.c_str(), std::ios::binary);
 if (!outfile) {
 cout << "Couldn't open " << sFilePri << " for writing!" << endl;
 exit(1);
 }
 outfile << keyPrivDER;
 outfile.close();
 cout << "done." << endl;

 // output DER for public key to file
 cout << "Creating file " << oFile << ".pub ...";
 outfile.open(sFilePub.c_str(), ios::binary);
 if (!outfile) {
 cout << "Couldn't open " << sFilePub << " for writing!" << endl;
 exit(1);
 }
 outfile << keyPubDER;
 outfile.close();
 cout << "done." << endl;

 // all done!
 cout << endl << "Finished successfully!" << endl;

 return;
}

/***
 EECS 498: Introduction to Cryptography
 Brandon Arrendondo [barendo@umich.edu]
 Nic Jansma [njansma@umich.edu]

 ecdsaSign.cpp

 Sign a message with ECC private keys.
***/
#include "borzoi.h"
#include "nist_curves.h"
#include <fstream>
#include <string>

using namespace std;

void ecdsa_sign(string sInFile, string sOutFile, string sKeyFile);
void print_octetstr(OCTETSTR o);

int main (int argc, char* argv[]) {
 // send to key generation function

 if (argc != 4) {
 cout << "ECDSA Signature Generation" << endl;
 cout << "Usage: ecdsa_sign input_file sig_file priv_key" << endl << endl;
 exit(1);
 }

 // generate keys to a file
 ecdsa_sign(argv[1], argv[2], argv[3]);
 return 0;
}

void ecdsa_sign(string sInFile, string sOutFile, string sKeyFile) {
 OCTETSTR oStr;
 OCTET o;
 OCTETSTR hash;
 char c;

 // open file from disk
 cout << "Reading in data from " << sInFile << "... ";
 ifstream ifsInFile(sInFile.c_str(), std::ios::binary);
 if (!ifsInFile) {
 cout << "Error! Couldn't read input file " << sInFile << "!" << endl;
 exit(1);
 }

 // read file into memory
 while (ifsInFile.get(c)) {
 o = (unsigned char)c;
 oStr.push_back (o);
 }

 cout << "done." << endl << endl;

 // compute hash of message
 hash = SHA1(oStr);
 HexEncoder h(hash);
 cout << "Hash: " << h << endl;

 // read in private key
 oStr.clear();

 cout << "Reading in private key... " << endl;
 ifsInFile.close();
 ifsInFile.clear();
 ifsInFile.open(sKeyFile.c_str(), std::ios::binary);
 if (!ifsInFile) {

Nic Jansma
Text Box
Appendix A5

 cout << "Error! Couldn't read key file " << sKeyFile << "!" << endl;
 exit(1);
 }

 // read file into memory
 while (ifsInFile.get(c)) {
 o = (unsigned char)c;
 oStr.push_back (o);
 }
 ECPrivKey keyPriv = DER(oStr).toECPrivKey();
 cout << "done!" << endl;

 cout << "Generating signature, please wait..." << endl;
 // convert input to private key

 // create signature object
 ECDSA sig (keyPriv, OS2IP(hash));

 DER sigDER(sig);

 cout << "done!" << endl << endl;

 // output DER to sig file
 cout << "Creating signature file " << sOutFile << "...";
 ofstream outfile(sOutFile.c_str(), ios::binary);
 if (!outfile) {
 cout << "Couldn't open " << sOutFile << " for writing!" << endl;
 exit(1);
 }
 outfile << sigDER;
 outfile.close();
 cout << "done." << endl << endl;

 cout << "Signature:" << endl;
 h = HexEncoder(sigDER);
 cout << h << endl << endl;

 cout << "Finished successfull!" << endl;

 return;
}

void print_octetstr(OCTETSTR o) {
 for (int i = 0; i < o.size(); i++) {
 cout << o[i];
 }
}

/***
 EECS 498: Introduction to Cryptography
 Brandon Arrendondo [barendo@umich.edu]
 Nic Jansma [njansma@umich.edu]

 ecdsaVerify.cpp

 Verify a message signed with ecdsaSign.
***/

#include "borzoi.h"
#include "nist_curves.h"
#include <fstream>
#include <string>

using namespace std;

bool ecdsa_verify(string sInFile, string sSigFile, string sKeyFile);

int main (int argc, char* argv[]) {
 // send to key generation function

 if (argc != 4) {
 cout << "ECDSA Signature Generation" << endl;
 cout << "Usage: ecdsa_verify input_file sig_file pub_key" << endl << endl;
 exit(1);
 }

 // generate keys to a file
 if (ecdsa_verify(argv[1], argv[2], argv[3])) {
 cout << "Verification successful!" << endl;
 } else {
 cout << "Verification FAILED!" << endl;
 }
 return 0;
}

bool ecdsa_verify(string sInFile, string sSigFile, string sKeyFile) {
 OCTETSTR oStr;
 OCTET o;
 OCTETSTR hash;
 char c;

 // open file from disk
 cout << "Reading in data from " << sInFile << "... ";
 ifstream ifsInFile(sInFile.c_str(), std::ios::binary);
 if (!ifsInFile) {
 cout << "Error! Couldn't read input file " << sInFile << "!" << endl;
 exit(1);
 }

 // read file into memory
 while (ifsInFile.get(c)) {
 o = (unsigned char)c;
 oStr.push_back (o);
 }

 cout << "done." << endl << endl;

 // compute hash of message
 hash = SHA1(oStr);
 HexEncoder h(hash);
 cout << "Hash: " << h << endl << endl;

 // read in public key
 oStr.clear();

 cout << "Reading in public key... " << endl;

Nic Jansma
Text Box
Appendix A6

 ifsInFile.close();
 ifsInFile.clear();
 ifsInFile.open(sKeyFile.c_str(), std::ios::binary);
 if (!ifsInFile) {
 cout << "Error! Couldn't read key file " << sKeyFile << "!" << endl;
 exit(1);
 }

 // read file into memory
 while (ifsInFile.get(c)) {
 o = (unsigned char)c;
 oStr.push_back (o);
 }
 ECPubKey keyPub = DER(oStr).toECPubKey();
 cout << " done!" << endl << endl;

 // read in public key
 oStr.clear();

 cout << "Reading in signature file... " << endl;
 ifsInFile.close();
 ifsInFile.clear();
 ifsInFile.open(sSigFile.c_str(), std::ios::binary);
 if (!ifsInFile) {
 cout << "Error! Couldn't read key file " << sKeyFile << "!" << endl;
 exit(1);
 }

 // read file into memory
 while (ifsInFile.get(c)) {
 o = (unsigned char)c;
 oStr.push_back (o);
 }

 ECDSA sig = DER(oStr).toECDSA();

 cout << "Verifying signature, please wait..." << endl;
 return (sig.verify(keyPub, OS2IP(hash)));
}

